• Title/Summary/Keyword: SALINITY AREA

Search Result 698, Processing Time 0.025 seconds

Interleaving Phenomena of the North Pacific Intermediate Water in the Offshore Area of the Kuroshio

  • Yang, Sung-Kee;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.521-527
    • /
    • 2003
  • To study the intruded phenomena of North Pacific Ocean around Boso peninsular, water property distribution in the adjacent seas to Japan is studied using the hydrographic data obtained by Japan Maritime Agency and Japan Fisheries Agency from 1973 to 1996, The scattering of water type in T-5 diagram is relatively small in the Kuroshio Region. Both the envelopes of saline side and of fresh side of the scattered data points shifts gradually from saline side to fresh side as the observation Line moves from southwest to northeast. In mixed water region, the scattering of water type increases rapidly as the observation line moves north; the envelope of fresh cold side moves towards fresh cold side much faster than that of saline side. This suggests that the water does not advect along the salinity minimum layer, but the salinity minimum layer can be understood as a boundary of two different waters aligned vertically, We defined the typical water masses as the Oyashio Water and the Kuroshio Water. The water mass below the salinity minimum layer may be created by isopycnal mixing of these two water masses with a fixed mixing rate. While the water mass above the salinity minimum cannot be created simply by isopycnal mixing. The salinity minimum layer may be eroded from upper side due to active minxing processes in the surface layer, while the water of the salinity minimum layer moves gradually southward. This appears to give an explanation why the thermosteric anomaly value at salinity minimun decereases towards south.

An Unusual Coastal Environment and Cochlodinium polykrikoides Blooms in 1995 in the South Sea of Korea

  • Kang, Young-Shil;Kim, Hak-Gyoon;Lim, Wol-Ae;Lee, Chang-Kyu;Lee, Sam-Geun;Kim, Sook-Yang
    • Journal of the korean society of oceanography
    • /
    • v.37 no.4
    • /
    • pp.212-223
    • /
    • 2002
  • Cochlodinium polykrikoides bloom in 1995 was studied with a focus on an unusual coastal environment in the South Sea of Korea. Data on temperature, salinity, and zooplankton biomass during 1965-1998 and nutrients during 1990-1998 and chlorophyll-a during 1995-1998 were used in this study. These data were obtained from the serial oceanographic observations in Korean waters carried out by the National Fisheries Research and Development Institute. In 1995 the C. polykrikoides bloom began in the coastal area around Narodo Island in August and consequently occurred to the whole coastal area of the South and East Seas of Korea. During June-October 1995, the coastal environment was unusual compared with the long-term means during 1965-1998. In June 1995, sea surface temperature was 1-2$^{\circ}C$ warmer than in other years in all coastal areas, while salinity was high only to the east of Jeju Island. In August 1995, a strong coastal front appeared inshore of a line between Jeju and Tsushima Islands. In particular, a strong coastal front which showed the characteristics of upwelling front occurred in the coastal area around Narodo and Sorido Islands, not only because of a strong intrusion of the Tsushima Warm Current but also because of the upwelling of cold bottom water. Salinity was low in the neighboring waters of western side of Jeju Island. Nutrients and chlorophyll-a were high in the inshore area between Narodo and Sorido Islands in 1995 in contrast with the other years and areas. Zooplankton showed an unusually high abundance in the coastal area in October 1995. We conclude that the Tsushima Warm Current strongly influenced the South Sea of Korea in 1995 and created strong upwelling front bordering cold upwelled water in the coastal area around Narodo and Sorido Islands. It leads us that these physical structures introduce the favorable environment for the development of C. polykrikoides blooms. We suggest that C. polykrikoides has a bio-physical tolerance of high shear and stress and prefers frontal and upwelling relaxed areas as its habitat. We also find that nutrients were not supplied to the coastal area from the offshore where a low salinity water mass with high nutrients appeared around Jeju Island. Because the strong upwelling front protect the reach of offshore low saline water mass. The main source of nutrients was the upwelled water mass in the coastal area of Wando-Narodo-Sorido.

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.

Water Quality and Heavy Metals in the Surface Seawaters of the Saemangeum Area during the Saemangeum-dike Construction (새만금 방조제 체절 과정 중 새만금 주변해역 표층수의 수질과 중금속 분포 특성)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Kim, Seong-Soo;Park, Jong-Soo;Park, Jun-Kun;Cho, Sung-Rok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2009
  • In order to investigate spatial and temporal distributional characteristics of major water qualities in the Saemangeum area during the Saemangeum dike construction, salinity, COD, dissolved nutrients(DIN, Silicate) and heavy metals were analyzed from the surface water collected in April, May, August and November 2002. The overall value of Salinity, COD, DIN, and silicate in surface waters were in the range of $13.08{\sim}31.96\;psu$, $0.12{\sim}3.43\;mg/L$, $0.001{\sim}2.638\;mg/L$, and $0.010{\sim}3.181\;mg/L$, respectively. The COD and DIN in each survey showed the highest concentration at the mouth of Mangyeong river estuary(St. 1) where freshwater flow into the Saemangeum area. The concentrations of nutrients were high in the inner part of the Saemangeum dike with low-salinity, and low nutrients in the outer part of the dike with high-salinity, which strongly indicated that concentrations were adjusted by physical mixing. The ranges of dissolved metals and acid-soluble Hg in surface seawater were $0.006{\sim}0.115{\mu}g/L$ for Co, $0.26{\sim}0.114{\mu}g/L$ for Ni, $0.14{\sim}0.93{\mu}g/L$ for Cu, $0.04{\sim}0.53{\mu}g/L$ for Zn, $0.010{\sim}0.043{\mu}g/L$ for Cd, $0.010{\sim}0.795{\mu}g/L$ for Pb, and $0.25{\sim}4.16{\mu}g/L$ for Hg. The highest concentrations of some metals except for Cd were found at the estuary(Sts. 1 or 3). In most cases, a decreasing order of metal concentrations towards open sea(low-salinity$\rightarrow$high-salinity) was observed and showed positive relationship with DIN and silicate caused by land base pollutants input. On the other hand, due to Cd desorption from suspended solids in saline water, dissolved Cd concentrations were high in high-salinity area and low in low-salinity. In November, Co, Zn, Cu and Pb were relatively high in the northern area of the outer-side of Saemangeum, which was only influenced by the Geum river discharge. The concentrations of most dissolved metals of this study were lower than those of the past data in this area, but higher than those in Lena river estuary under the pristine environment.

  • PDF

Critical Saline Concentration of Soil and Water for Rice Cultivation on a Reclaimed Saline Soil (간척지 벼 재배시 토양 및 관개수 염의 안전 한계농도)

  • 최원영;이규성;고종철;최송열;최돈향
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.238-242
    • /
    • 2003
  • Reclaimed tidal areas for rice cultivation are irrigated with salt mixed water when there is severe drought. Therefore, we identified the critical concentration of saline water for rice growth on a reclaimed saline soil in Korea. The experiment was conducted at the Kyehwado substation of the National Honam Agricultural Experiment Station (NHAES) during 2001-2002. Two experimental fields with 0.1-0.2% for low soil salinity and 0.3-0.4% for medium soil salinity levels were used. The experiment involved four levels of salt solution mixed with sea water (at 0.1, 0.3, 0.5, 0.7%) compared with a control using tap water in a split-plot design with three replicates. Saline solution was applied only two times at seedling stage (10 DAT and 25 DAT) for 5 days. Gyehwabyeo and dongjinbyeo, japonica rice varieties, were used in this experiment. Plant height and number of tillers sharply decreased in the 0.5% saline water in low soil salinity level and 0.1% in medium soil salinity level. For yield components, panicle number per unit area and percentage of ripened grain dramatically decreased in the 0.5% saline water in low soil salinity and 0.1% in medium soil salinity level. But 1,000-grain weight of brown rice decreased sharply in the 0.5% saline water in low soil salinity and 0.3% in medium soil salinity, indicating that this component was not much affected unlike other yield components. Milled rice yield decreased significantly with saline water level in both low and medium soil salinity. In the 0.7% low saline soil, the yield index was only 36% compared with the control. In medium soil salinity, even the control plot showed only 62% yield index compared with the control in the low soil salinity treatment. Results indicated that the critical concentration of saline water for rice growth in terms of economical income of rice production was 0.5% in low soil salinity and tap water in medium soil salinity.

Seasonal and Year-to-year Variations of Water Quality in Mokpo Harbor Area by the Long-term Monitoring (목포항 주변 해역에서 장기 모니터링을 통한 수질의 계절 및 년간변동)

  • Park, Joong-Hyun;Park, Seong-Yoon;Lee, Yong-Hwa;Choi, Da-Mi;Lee, Sang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.97-102
    • /
    • 2005
  • Seasonal and year-to-year variations of water quality were observed at six stations in Mokpo Harbor area between 1997 and 2004. Water quality(salinity, pH, DIN and DIP) was variable between years. Salinity was significantly low in 1998, while nutrient concentrations were significantly higher in 1998 than other years. Water temperature, salinity, DO, COD and DIP concentrations exhibited clear seasonal variations, and these seasonal trends reflected seasonal changes in fresh water discharge from Youngsan river mouth. Water temperature, COD and DIP were significantly higher in August, while salinity and DO reached minimum values in August. In the station 1(Youngsan river mouth), waters with low salinity are subject to high nutrient inputs from Youngsan river, while in the station 6 (outside from Mokpo harbor) waters are primarily oceanic Relationship between water quality parameters indicates that salinity is the primary factor influencing the COD, DO, pH, Chlorophyll a and nutrient concentrations in Mokpo harbor area.

  • PDF

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Salinity and Sweetness of Korean Jang Products related to Taste Threshold, Preferences of Food Group and Nutrient Intakes in the Rural Elderly (전통 장류의 염도 및 당도가 농촌 노인의 맛 감지도와 식품섭취행태에 미치는 영향)

  • Oh, Se In;Lee, Mee Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.780-787
    • /
    • 2017
  • The consumption of high-salt foods is an independent risk factor for increased hypertension. Thus, evaluating the relationship of taste sensitivity and pleasantness of high-salt foods such as Korean jang products, would help contribute to an understanding of salty food eating behaviors of the Korean rural elderly. This study aimed to verify the association between taste sensitivity and salinity of Korean jang products, and the preferences of food groups and nutrient intake in the rural elderly. We studied 269 elderly persons (males 83, females 186) aged above 65 years, residing in the rural area, Sunchang gun Jeonbuk. For each subject, a recognition threshold of 4 basic tastes and pleasant concentrations of NaCl were estimated using the sip- and-spit method. Taste preferences, frequency of intake of food groups, nutrient intakes, and salinity and sweetness of Korean jang products (Doenjang, Ganjang, Gochujang) were assessed. No association was found between salt taste recognition threshold and optimally preferred concentration of salt and salinity of Korean jang products. However, the sweet taste recognition threshold was positively related to the sweetness of Korean jang products. Also, the salinity of Doenjang positively correlated with the frequencies of food groups and nutrient intakes. That is to say that the sweet taste sensitivity was related to the sweetness of Korean jang products, but was not sensitive to the salty taste. The salinity of Doenjang correlated with the consumption of food and nutrient intakes. Taken together, these findings suggest the need for appropriate intervention and education to reduce the salinity of Doenjang, which is an important modifiable factor contributing to reducing sodium intake in the rural elderly.

Shell Valve Movement of Pacific Oysters, Crassostrea gigas, in Response to Low Salinity Water (저염수에서 이매패류 참굴(Crassostrea gigas)의 패각운동)

  • Moon, Suyeon;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.684-689
    • /
    • 2017
  • We examined the possibility of developing an early monitoring system using the shell valve movement activity of Pacific oyster (Crassostrea gigas) for early detection of low salinity water in coastal areas. At salinity levels of 30 psu and 20 psu, SVMs were detected $7.32{\pm}3.21times/hr$ and $7.11{\pm}3.90times/hr$, respectively, The patterns and times of SVMs were not significantly different between the two experiment phases. However, at 10 psu and 5 psu, shell valves were observed to be permanently closed in all experiments. Under combined condition (Group 1: temperature $15^{\circ}C$ ${\times}$ salinity 15 psu), SVMs were observed from 20 psu to 30 psu over a 2 - 3 hr period, and then remained closed. In Group 2 (temperature $30^{\circ}C$ ${\times}$ salinity 15 psu), SVMs were observed, which indicated that the physiological condition of the oysters reached a critical point. Thus, it may be possible to utilize SVMs as an early warning signal for low salinity water.

The Comparison of Grid Resolutions using EFDC in Saemangeum Reservoir (격자 해상도에 따른 EFDC의 새만금호 모의)

  • Shin, Yu-Ri;Jang, Jeongryeil;Choi, Jung-Hoon;Cho, Young Kweon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.646-656
    • /
    • 2012
  • This study area was Saemangeum Reservoir in Korea and the applied model was Environmental Fluid Dynamics Code(EFDC). It was the same as the scenarios to the boundary and initial conditions except the resolutions of the model grids. The resolutions were about 800 and 2,000 cells. It was considered scenario 1 and 2. The model was performed to simulate the water temperature, salinity, water quality parameters such as dissolved oxygen(DO), chemical oxygen demand(COD), total nitrogen(T-N), and total phosphorus(T-P) at 2008. The simulation results of the two scenarios were reflected in the trend of observed data tolerably. However, water flow, water temperature, and salinity showed high confidence level at the scenario 1. The water quality items did not present high confidence level at the scenario 1 because which concept was considered to biochemical and physical processes. This result shows that grid resolution has an influence on the water transport and the effect is reflected directly shallow and narrow water area. But, the selection of grid resolution should be considered the purpose of model simulation and the process of target items.