• Title/Summary/Keyword: SAFE-ROCK

Search Result 165, Processing Time 0.018 seconds

Impact of rock microstructures on failure processes - Numerical study based on DIP technique

  • Yu, Qinglei;Zhu, Wancheng;Tang, Chun'an;Yang, Tianhong
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.375-401
    • /
    • 2014
  • It is generally accepted that material heterogeneity has a great influence on the deformation, strength, damage and failure modes of rock. This paper presents numerical simulation on rock failure process based on the characterization of rock heterogeneity by using a digital image processing (DIP) technique. The actual heterogeneity of rock at mesoscopic scale (characterized as minerals) is retrieved by using a vectorization transformation method based on the digital image of rock surface, and it is imported into a well-established numerical code Rock Failure Process Analysis (RFPA), in order to examine the effect of rock heterogeneity on the rock failure process. In this regard, the numerical model of rock could be built based on the actual characterization of the heterogeneity of rock at the meso-scale. Then, the images of granite are taken as an example to illustrate the implementation of DIP technique in simulating the rock failure process. Three numerical examples are presented to demonstrate the impact of actual rock heterogeneity due to spatial distribution of constituent mineral grains (e.g., feldspar, quartz and mica) on the macro-scale mechanical response, and the associated rock failure mechanism at the meso-scale level is clarified. The numerical results indicate that the shape and distribution of constituent mineral grains have a pronounced impact on stress distribution and concentration, which may further control the failure process of granite. The proposed method provides an efficient tool for studying the mechanical behaviors of heterogeneous rock and rock-like materials whose failure processes are strongly influenced by material heterogeneity.

Blast Design of Hilly Rock Excavation Adjacent to Structures and Facilities (구조물 및 시설물 인접 구릉지의 암반굴착 발파설계)

  • 류창하;선우춘;신희순;정소걸;최병희
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 1994
  • This paper concerns the design of blasts adjacent to structures and facilities. In order to investigate the site characteristics, measurements of in-situ wave propagation and laboratory tests of rock cores taken from the boreholes were carried out. Effects of rock media and delay intervals on ground vibration levels were identified from over sixty measurements of three times of test blasts. For practical use in the field, an empirical propagation equation was derived so as to reflect the characteristics of rock media and delay effects. Safe limits of vibration level for structures were conservatively established based on various suggested criteria. Safe limits for facilities were adopted so that vibration levels induced by blasting should not exceed the allowable limits specified in the manufacturer's installation condition. Suggested were blast pattern and operation to enhance the rock fracturing and to reduce the ground vibration levels under the restricted conditions.

  • PDF

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

Safe tunneling method using numerical modeling of rock blocks in long tunnels (장대터널에서의 암반 블록의 수치 모델링을 이용한 터널 안전 시공법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Since about 70 percent of the territory is mountainous, more tunnels are constructed in Korea for maximizing the development efficiency. With the increasing number of tunnel construction, safe construction in tunnels has been emerged as the utmost important subject. Recently, the number of long tunnel construction is steeply increased because of the request for high speed and straight road. In this study, a safe tunneling method using numerical modeling of rock blocks in long tunnels is proposed, and then applied to the long tunnel based on real discontinuity information observed in situ. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the safe tunneling method using numerical modeling of rock blocks. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports.

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙석방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-U;Lee, Hak-Yong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.50
    • /
    • pp.84-96
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from failing rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

  • PDF

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙성방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-Woo;Lee, Hak-Yoog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from falling rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed numerical modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

Design and Construction of Green Slope Fabric Form on Cutting Slope (절토사면의 Nailing 보강 Fabric Form의 설계와 시공)

  • 송재헌;최영근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.81-92
    • /
    • 2000
  • Green Slope(F.F.R : Fabric Form Reinforcement Method) is one of an environmental slope protection method at steep cutting sites. This method is that soil and rock at the steep slope is fixed using the environmental Fabric Form, Nail, Rock Bolt and Rock Anchor, And then, the surfaces covered with grasses or weeds. This method will be satisfied both safe slope protection and natural environment appearance. Green Slope is a useful method of the construction sites of steep cutting slopes.

  • PDF

Concrete Degradation Comparison of Computer Programs for Post-Closure Safety Assessment of Wolsong Low-and Intermediate-Level Radioactive Waste Disposal Facility (월성원자력환경관리센터 폐쇄 후 안전평가 컴퓨터프로그램의 콘크리트 열화현상에 대한 상호비교)

  • Jung, Kang-Il;Bang, Je-Heon;Park, Jin Beak;Yoon, Jeong Hyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.311-324
    • /
    • 2013
  • To ensure the reliability of computer programs used for the post-closure safety assessment in the Wolsong LILW Center, the results from MASCOT, SAFE-ROCK and GOLDSIM programs are compared with a problem for degradation. Advantages and disadvantages of each computer programs are individually analyzed. Effects on the individual dose are assessed with each computer programs. MASCOT and SAFE-ROCK showed similar results for $^{129}I$ and $^3H$. However, GOLDSIM represented different results for $^{129}I$ and $^3H$. It is analyzed further and compared with the fluxes in each barrier of the disposal system. Througout the benchmarking testing of the computer program, the limitation of computer program can be continuously found out for the mature post-closure safety of Korean radwaste disposal system.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

동굴 안정성 입력자료로서의 탄성계수(Es)결정

  • 김정대;박인식
    • Tunnel and Underground Space
    • /
    • v.1
    • /
    • pp.32-38
    • /
    • 1991
  • 9 nuclear power plants are presently in operation in Korea. They produce radioactive waste of which the most long-lived radioactive elements need to be safely stored for hundreds of thousands of years, isolated from humanity and the environment. The safe disposal of high level radioactive waste in mined cavities requires knowledge of the mechanical. thermal and fluid flow characteristics of rock as perturbed by a thermal pulse The literature review was performed to assemble data on the following properties: modulus tensile strength compressive strength thermal expansion specific heat, thermal conductivity thermal diffusivity and permeability.

  • PDF