• Title/Summary/Keyword: S152

Search Result 1,588, Processing Time 0.029 seconds

Performance of Refrigerator Using R134a, R152a and R22/142b (R134a, R152a, R22/142b를 이용한 냉동기의 성능실험)

  • Chang, Y.S.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • Experiments on the performance of refrigeration system using alternatives to R12 are carried out. The condenser and the evaporator are concentric-tube heat exchangers of counter-flow type and the compressor is driven by a variable speed motor. In this study, R134a, R152a, R22/142b(50 : 50 by mass) are adopted as alternatives to R12. Tests are performed by varying the inlet and outlet temperatures of secondary fluids of evaporator and condenser under the condition of constant compressor speed, degree of superheating and degree of subcooling. Results show that R134a has refrigeration capacity close to that of R12 and requires the greatest compressor power compared with that of others. And the system using R152a shows the best performance from the viewpoint of refrigeration capacity, compressor power and coefficient of performance. R22/142b is superior to R12 in the above points.

  • PDF

Thermodynamic Properties of Alternatives for R12, R22 and Performances of Refrigerator (R12 및 R22대체냉매의 열역학적 물성치 및 냉동기의 성능비교)

  • Chang, S.D.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • Thermodynamic properties of alternatives for R12 and R22 were estimated and performances of refrigerating cycle using these refrigerants were compared. In this study, we adopt R134a, R22/R142b, R22/R152a, R22/R152a/R124 as alternatives for R12 and R32/R134a for R22. Thermodynamic properties of these refrigerants were estimated using modified CSD equation of state. Cycle simulations of the refrigerating system considering heat source were carried out in order to compare the performance of the system. R134a shows relatively lower COP than R12 but very similar VCR. R22/R142b(50/50 mass fraction), R22/R152a(10/90), R22/R152a/R124(30/25/45) are good for the substitutes of R12 and R32/R134a(30/70) is appropriate for that of R22 in view of COP and VCR.

  • PDF