• 제목/요약/키워드: S100beta protein

검색결과 159건 처리시간 0.029초

돼지에서 역행성 뇌관류 시행 후 혈청 및 소변의 뇌손상 관련지표(S100-$\beta$, Neuron-specific enolase)의 변화 (The Changes of Brain Injury Markers(S100-$\beta$, Neuron-Specific enolase) After Retrograde Cerebral Perfusion Under Total Circulatory Arrest in Pigs)

  • 김상윤;김만호;김경환
    • Journal of Chest Surgery
    • /
    • 제35권12호
    • /
    • pp.847-853
    • /
    • 2002
  • 저자는 이미 120분간의 역행성 뇌관류를 시행하여 이의 안전성에 대한 결과를 발표한 바 있다. 이번 연구는 neuron-specific enolase와 S100 베타 단백의 혈청 및 소변내 농도와의 관계 및 변화를 관찰하고 소변 검체를 통한 뇌손상 조기 검출 가능성에 대하여 규명하고자 계획하였다. 대상 및 방법: 35 kg 돼지를 이용하여 120분간 역행성 뇌관류를 시행한후, 심폐기 이탈을 시행하고 2시간 동안 생존을 유도하였으며, 시간 변화에 따른 동맥 혈압, 경정맥압, 혈청 및 소변내 neuron-specific enolose (NSE) 및 S100베타 단백치를 측정하였다. 역행성 뇌관류 시행 중 중심정맥압은 20~25 mmHg를 유지하였다. 결과: neuron-specific enolase의 혈청농도(ng/$m\ell$)는 마취 유도 시 0.67$\pm$0.18, 심폐기 가동 직후에 0.53$\pm$0.47, 심폐기 가동 후 20분대에 0.44$\pm$0.27, 역행성 뇌관류 20분대에 0.24$\pm$0.09, 40분대에 0.37$\pm$0.35, 60분대에 0.33$\pm$0.21, 80분대에 0.37$\pm$0.22, 100분대에 0.41$\pm$0.23, 120분대에 0.48\ulcorner0.26, 심폐기 재가동후 30분대에 0.42$\pm$0.29, 60분대에 0.35$\pm$0.32, 심폐기 이탈 후 30분대에 0.42$\pm$0.37, 60분대에 0.47$\pm$0.34, 90분대에 0.47$\pm$0.28, 120분대에 0.57$\pm$0.29 로 나타나 역행성 뇌관류 전후에 유의한 변화 양상을 관찰할 수 없었다(ANOVA, p>0.05). 요중 농도(ng/$m\ell$) 또한 역행성 뇌관류 전후에 유의한 변화 양상을 관찰할 수 없었다(ANOVA, p>0.05). 또한 혈중 농도와 요중 농도간의 상관성을 발견할 수 없었다(Pearson correlation, p>0.05). 동일한 측정 시점에서의 S-100 베타 단백 혈청 농도(ng/$m\ell$)는 0.14$\pm$0.08, 0.15$\pm$0.07, 0.22$\pm$0.15, 0.23$\pm$0.07, 0.28$\pm$0.10, 0.40$\pm$0.05, 0.47$\pm$0.03, 0.49$\pm$0.12, 0.43$\pm$0.11, 0.46$\pm$0.15, 0.62$\pm$0.17, 0.77$\pm$0.21, 0.78$\pm$0.23, 0.77$\pm$0.23, 0.82$\pm$0.33으로 뇌관류를 시행한 이후에서 시행이전에 비해 유의하게 상승하였음을 관찰할 수 있었다(ANOVA, p<0.05, post hoc test). S-100 베타 단백의 소변내 농도(ng/$m\ell$)는 역행성 뇌관류 기간을 제외하고 동일한 측정시점에서 측정할 수 있었으며, 심폐기 가동전에 비해 재가동 후 측정치가 모두 통계적으로 유의하게 상승하였다(ANOYA, p<0.05). 혈중 측정치와 요중 측정치는 모두 역행성 뇌관류 후 증가하는 양상을 보였으며 의미 있는 상관성을 발견할 수 있었다(Pearson correlation, p<0.05). 결론: 뇌손상 여부를 판단하기 위하여 시행한 검사 중 S-100 베타 단백의 혈청 및 소변에서의 수치는 뇌관류 전보다 유의하게 증가하는 양상을 보였으며 두 검체 사이에는 의미 있는 상관관계가 있음을 알 수 있었다. 뇌손상의 조기 지표로서 S-100 베타단백을 활용할 수 있는 기초자료가 되었다고 생각되며, 환자를 대상으로 한 임상 연구를 할 수 있는 토대가 되었다고 사료된다.

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권5호
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.

소의 뇌조직 Phospholipase C의 활성화에 미치는 G-단백질의 역할 (The Role of G protein in the Activation of Phospholipase C from Bovine Brain)

  • 김정희;이동진;변영주
    • Journal of Yeungnam Medical Science
    • /
    • 제9권2호
    • /
    • pp.288-301
    • /
    • 1992
  • 소의 중추신경계의 신경전달인자에 의한 세포막에서의 정보전달 과정에 관여하는 PLC 활성화에 G-단백질의 관여 여부를 관찰하기 위하여 소의 뇌조직의 PLC ${\beta}$, ${\gamma}$${\delta}$를 얻어 각 isozyme의 특성을 관찰하였다. 기질용액에 phosphatidyl choline(PC)을 첨가시 PLC 각 isozyme 마다 정도의 차이는 있으나 증가 양상을 보였으며 PLC ${\delta}$$100{\mu}M$ $Ca^{2+}$ 농도에서 높은 활성도 증가를 보였다. 세포막 소포체를 형성하기 위하여 $PIP_2$기질과 PC에 detergent로 cholate와 deoxycholate 농도에 따른 PLC 효과 관찰에서 cholate 농도 0.2%에서 1%까지 증가할 때 효소 활성도의 지속적인 상승이 관찰되었고, deoxycholate는 농도가 0.2%에서 높았다가 0.4%에서 낮아졌고 1%까지 증가함에 따라 PLC 효소 활성도는 약간 증가하였다. 기질액에 뇌추출액을 첨가하여 cholic acid 농도에 따른 PLC의 효과를 관찰한 결과 cholic acid 농도 0.2%에서 보다 1%에서 각 isozyme 모두에서 PLC활성도가 증가하였다. 소의 여러 장기에서 PLC isozyme의 분포정도를 방사면역측정방법으로 관찰하였을 때 뇌조직에 가장 많이 분포하고 있으며 특히 PLC ${\beta}$, ${\gamma}$가 많았고, PLC ${\delta}$는 부신에서 가장 많이 분포하였다. 다음으로 PLC ${\beta}$는 부신과 위, PLC${\gamma}$는 부신과 폐순이었다. PLC 효소가 활성화될 때 G-단백질의 관여 여부에 관하여 cholate 0.2%와 0.1%에서 G-단백질과 GTPrS 및 PLC의 결합정도의 관찰은 조직분쇄시료를 소의 뇌 및 부신조직을 이용하여 $^{35}S$-GTPrS 첨가시와 단세포군 항체를 이용한 경우 모두에서 1.49% 이하의 낮은 결합 정도를 관찰하였다. 그래서 정제된 PLC isozyme과 G-단백질 $Go{\alpha}$, $G{\beta}{\gamma}$, Gmix, $Gi{\alpha}$$Gt{\alpha}$ 각각에 대한 효과 관찰에 서 $Go{\alpha}$$G{\beta}{\gamma}$는 PLC ${\beta}$${\delta}$의 활성도를 증가시켰고, PLC ${\gamma}$는 별 영향이 없었으며 Gmix에서는 세효소 모두 증가시켰다. $Gi{\alpha}$는 PLC ${\beta}$${\gamma}$에서만 증가하였다. $Gt{\alpha}$는 PLC ${\beta}$${\gamma}$에서 억제하였고 PLC ${\delta}$에서는 증가 양상을 보였다. 그러므로 PLC 활성화에 G-단백질의 관여가 인지되며 PLC isozyme과 G-단백질의 종류에 따라 대개의 경우 증가하는 경향이나 일부는 억제 내지는 별 영향이 없는 것으로 나타났다.

  • PDF

골형태형성단백질이 백서치주인대세포와 두개관세포에 미치는 영향 (A Study of the Effects of Bone Morphogenetic Protein on the Characteristics of Rat Periodontal Ligament and Calvaria Cells)

  • 최진근;이만섭;권영혁;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제29권4호
    • /
    • pp.765-785
    • /
    • 1999
  • Bone morphogenetic protein-2/4 (BMP-2/4) are members of Transforming Growth $Factor-{\beta}\;(TGF-{\beta})$ superfamily and they may differentiate the osteoprogenitor cell and induce formation of cartilage and bone in vivo. This study was performed to investigate the effects of bone morphogenetic protein-2/4 on the characteristics of rat periodontal ligament cells(RPDL) and rat calvaria cells(RCV). In the control group, the cells were cultured alone with Dulbeco's Modified Eagle's Medium contained with 20% fetal bovine serum, $100{\mu}/ml$ penicillin, $100{\mu}/ml$ streptomycin. In the experimental groups, recombinant human bone morphogenetic protein-2/4 (25ng, 100ng, 250ng/ml) were added into the above culture condition. And then each group was characterized by examing the cell proliferation at 1, 2, 3, 5, 7th day, the amount of total protein synthesis and alkaline phosphatase activity at 2, 5, 7th day. And also, the calcified nodule was examed. The results were as follows ; 1 . Both RCV and RPDL cells in both control and experimental groups proliferated during the entire experimental period, but there is no stastically significant difference according to the BMP-2/4 concentration. 2 . Amount of total protein synthesis of both cells in both groups was steadily increased until 5th day, but all experimental groups were significantly different from the control group at 7th day. 3. Alkaline phosphatase activity of both cells in both groups was increased during the entire experiment period. In RCV cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 7th day. In RPDL cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 5th day, and all experimental groups were significantly different from the control group at 7th day. 4. In the both of the cultured Rat Periodontal ligament and calvaria cell treated with BMP-2/4 to compared with control group, it revealed more rapid cell polarization, cell aggregation and hyperchromatic stained on HE agent, and even though only 1 day treated with BMP-2/4 both RPDL and RCV showed more rapid cell reaction than control group. More sensivitve cell reaction of RCV were observed than RPDL in this experiment. From the above results, we could conclude that BMP-2/4 influenced the induction, proliferation and differentiation of bone forming cells

  • PDF

Effects of Ethanol Extract of Ligularia fischeri Leaves on Freund's Complete Adjuvant-Induced Model of Chronic Arthritis in Mice

  • Choi, Eun-Mi
    • Food Science and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.277-282
    • /
    • 2006
  • The aim of this study was to investigate the anti-inflammatory and anti-oxidant activity of Ligularia fischeri leaf extract on adjuvant induced arthritis in experimental mice. The oral administration of the L. fischeri leaf extract (LF), at doses of 100 and 200 mg/kg body weight once a day for 3 weeks, significantly reduced hindpaw swelling and the production of inflammatory cytokines (tumor necrosis factor(TNF)-${\alpha}$, interleukin(IL)-$1{\beta}$, and IL-6). Treatment with LF (100 mg/kg) also decreased the serum levels of triglyceride and low density lipoprotein(LDL)-cholesterol, and increased high density lipoprotein(HDL)-cholesterol contents compared with those of a control group. The induction of arthritis significantly increased oxidized proteins such as protein carbonyl, advanced oxidation protein products, and advanced glycation end-products in the lung, heart, and brain. Treatment with LF for 3 weeks reduced the levels of oxidized proteins. These results suggest that L. fischeri extract might be beneficial in the treatment of chronic inflammatory disorders.

The effect of nanoemulsified methionine and cysteine on the in vitro expression of casein in bovine mammary epithelial cells

  • Kim, Tae-Il;Kim, Tae-Gyun;Lim, Dong-Hyun;Kim, Sang-Bum;Park, Seong-Min;Lim, Hyun-Joo;Kim, Hyun-Jong;Ki, Kwang-Seok;Kwon, Eung-Gi;Kim, Young-Jun;Mayakrishnan, Vijayakumar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권2호
    • /
    • pp.257-264
    • /
    • 2019
  • Objective: Dairy cattle nutrient requirement systems acknowledge amino acid (AAs) requirements in aggregate as metabolizable protein (MP) and assume fixed efficiencies of MP used for milk protein. Regulation of mammary protein synthesis may be associated with AA input and milk protein output. The aim of this study was to evaluate the effect of nanoemulsified methionine and cysteine on the in-vitro expression of milk protein (casein) in bovine mammary epithelial cells (MAC-T cells). Methods: Methionine and cysteine were nonionized using Lipoid S 75 by high-speed homogenizer. The nanoemulsified AA particle size and polydispersity index were determined by dynamic light scattering correlation spectroscopy using a high-performance particle sizer instrument. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the cytotoxicity effect of AAs with and without nanoionization at various concentrations (100 to $500{\mu}g/mL$) in mammary epithelial cells. MAC-T cells were subjected to 100% of free AA and nanoemulsified AA concentration in Dulbecco's modified Eagle medium/nutrient mixture F-12 (DMEM/F12) for the analysis of milk protein (casein) expression by the quantitative reverse transcription polymerase chain reaction method. Results: The AA-treated cells showed that cell viability tended to decrease (80%) in proportion to the concentration before nanogenesis, but cell viability increased as much as 90% after nanogenesis. The analysis of the expression of genetic markers related to milk protein indicated that; ${\alpha}_{s2}$-casein increased 2-fold, ${\kappa}$-casein increased 5-fold, and the amount of unchanged ${\beta}$-casein expression was nearly doubled in the nanoemulsified methionine-treated group when compared with the free-nanoemulsified methionine-supplemented group. On the contrary, the non-emulsified cysteine-administered group showed higher expression of genetic markers related to milk protein ${\alpha}_{s2}$-casein, ${\kappa}$-casein, and ${\beta}$-casein, but all the genetic markers related to milk protein decreased significantly after nanoemulsification. Conclusion: Detailed knowledge of factors, such nanogenesis of methionine, associated with increasing cysteine and decreasing production of genetic markers related to milk protein (casein) will help guide future recommendations to producers for maximizing milk yield with a high level of milk protein casein.

Screening and Purification of a Novel Transaminase Catalyzing the Transamination of Aryl ${\beta}-Amino$ Acid from Mesorhizobium sp. LUK

  • Kim, Ju-Han;Kyung, Do-Hyun;Yun, Hyung-Don;Cho, Byung-Kwan;Kim, Byung-Gee
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1832-1836
    • /
    • 2006
  • Mesorhizobium sp. LUK, which utilizes 3-amino-3-phenylpropionic acid as the sole source of nitrogen with high enantioselectivity (E(S)>100), was isolated using enrichment culture. The enzyme involved in the utilization of (S)-3-amino-3-phenylpropionic acid was confirmed to be a transaminase and was purified by 235-folds with a specific activity of 0.72 U/mg. The molecular weight of the purified protein was ca. 47 kDa and the active enzyme was determined as a dimer on gel filtration chromatography. The N-terminal sequence was obtained from the purified protein. Spontaneous decarboxylation of produced ${\beta}-keto$ acids was observed during the chiral resolution of 3-amino-3-phenylpropionic acid.

Sustained Intracellular Acidosis Triggers the Na+/H+ Exchager-1 Activation in Glutamate Excitotoxicity

  • Lee, Bo Kyung;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.593-598
    • /
    • 2017
  • The $Na^+/H^+$ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular $H^+$ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-${\beta}$ (PKC-${\beta}$) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to $100{\mu}M$ glutamate or 20 mM $NH_4Cl$. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-${\beta}$, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to $NH_4Cl$. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-${\beta}$, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-${\beta}$/ERK1/2/p90RSK pathway in neuronal cells.

Receptor for Advanced Glycation Endproducts (RAGE), Its Ligands, and Soluble RAGE: Potential Biomarkers for Diagnosis and Therapeutic Targets for Human Renal Diseases

  • Lee, Eun Ji;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.224-229
    • /
    • 2013
  • Receptor for advanced glycation endproducts (RAGE) is a multi-ligand receptor that is able to bind several different ligands, including advanced glycation endproducts, high-mobility group protein (B)1 (HMGB1), S-100 calcium-binding protein, amyloid-${\beta}$-protein, Mac-1, and phosphatidylserine. Its interaction is engaged in critical cellular processes, such as inflammation, proliferation, apoptosis, autophagy, and migration, and dysregulation of RAGE and its ligands leads to the development of numerous human diseases. In this review, we summarize the signaling pathways regulated by RAGE and its ligands identified up to date and demonstrate the effects of hyper-activation of RAGE signals on human diseases, focused mainly on renal disorders. Finally, we propose that RAGE and its ligands are the potential targets for the diagnosis, monitoring, and treatment of numerous renal diseases.

미생물에 의한 $\beta$-Galactosidase의 생산 및 이용에 관한 연구 (제2보) Penicillium sp.의 효소의 물리화학적 성질 및 이용 (Studies on the Production of $\beta$-Galactosidase by Microorganism and its Application (Part 2) Physicochemical Properties of the Enzyme of Penicillium sp. and its Application)

  • 오평수;서항원;양한철
    • 한국미생물·생명공학회지
    • /
    • 제9권4호
    • /
    • pp.213-218
    • /
    • 1981
  • 순수분리정제된 $\beta$-galactosidase의 분자량은 Sephadex G-200 gel filtration법에서 130,000이며 SDS-polyacrylamide gel electrophoresis에서 130,000외에 70,000이 확인되어 이 효소는 70,000인 2개의 subunit로 구성되어 있다고 판단되었다. 효소의 안정pH는 4.5~7.0이며 효소활성의 최적 pH는 4.7 최적온도는 5$0^{\circ}C$였다. 효소활성 및 안정제로 1가, 2가 금속ion을 필요로 하지않았으며 C $u^{++}$ 1mM에서 59%, galactose 100mM에서 48% 저해되었다. 5% lactose용액, 시유 및 10% skim milk 용액에 이 정제된 $\beta$-galactosidase 10units/$m\ell$를 사용하여 5$0^{\circ}C$에서 4시간 동안 반응시켰을 때 lactose가 각각 69.5%. 88.7% 및 72.6%가 glucose와galactose로 전환된 결과를 얻었다.

  • PDF