• Title/Summary/Keyword: S. toxytricini

Search Result 2, Processing Time 0.016 seconds

Cloning and Analysis of a Type II Polyketide Synthase Gene Cluster from Streptomyces toxytricini NRRL 15,443

  • Yoo An-Na;Demirev Atanas V.;Lee, Ji-Seon;Kim, Sang-Dal;Nam Doo-Hyun
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.649-654
    • /
    • 2006
  • A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), $\beta$-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.

Effect of Medium Components on the Lipstatin Production by Streptomyces toxytricini (배지 성분이 Streptomyces toxytricini에서의 lipstatin 발효에 미치는 영향)

  • Lim, Mi-Ok;Yin, Wencui;Lee, Ji-Seon;Yu, Yeon-Su;Kim, Sang-Dal;Nam, Doo-Hyun
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.172-176
    • /
    • 2006
  • In order to increase the productivity of lipstatin by Steptomyces toxytricini, the effect of medium components on the lipstatin production was investigated. Using TSB medium as a basal medium, a variety of carbon sources, nitrogen sources, lipid and fatty acids was supplemented into a fermentation medium. The seed culture of S. toxytricini grown in 25 ml TSB medium at $28^{\circ}C$ for 3 days with agitation at 200 rpm was inoculated in the size of 2% in fermentation media containing different components and fermented at $28^{\circ}C$ for 60 more hrs. In the examination of the effect of carbon sources, the best cell growth was observed in fermentation media supplemented with glucose or glycerol, but the lipstatin productivity was the highest in media containing lactose or sucrose. Among complex nitrogen sources, yeast extract was the best one for cell growth, but the highest lipstatin production was found in TSB media composed of 1.7% casitone and 0.3% soytone. The increased concentration of triolein as a lipid caused the promotion of cell growth but the significant suppression of lipstatin production. When 0.5% fatty acids were supplemented to fermentation medium, unsaturated fatty acids like linoleic or oleic acid suppressed cell growth as well as lipstatin production, but 2 times higher lipstatin production was achieved by stearic acid, a saturated fatty acid, differently from expectation.