• Title/Summary/Keyword: S. schottmulleri

Search Result 2, Processing Time 0.016 seconds

Degradation of Collagens, Immunoglobulins, and Other Serum Proteins by Protease of Salmonella schottmulleri and its Toxicity to Cultured Cells

  • Na, Byoung-Kuk;Kim, Moon-Bo;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.95-100
    • /
    • 1996
  • The effect of the extracellular protease of Salmonella schottmulleri on human serum constituents such as immunoglobulins, hemoglobin and lysozyme and tissue constituents such as fibronectin and collagens was investigated. This protease degraded collagens (type I and III), fibronectin and serum proteins such as human hemoglobin and lysozyme. Bovine serum albumin was degraded slightly. Thus, the present study suggested the possibility that this protease is not only played an important role in invasion of S. schottmulleri by degrading the constituent proteins such as collagens and fibronectin but also induced complications observed in septicemia and chronic infections by degrading the serum proteins. This protease is also capable of degrading defence-oriented humoral proteins, immunoglobulins (IgG and IgM). Furthermore, it is toxic to HEp-2 cells. These findings clarified the possible role of Salmonella protease as a virulence factor in the pathogenesis of Salmonella infections.

  • PDF

Purification and characterization of an extracellular protease from culture filtrate of salmonella schttmulleri

  • Na, Byoung-Kuk;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.244-251
    • /
    • 1995
  • An extracellular protease of Salmonella schottmulleri was purified from culture filtrate by using 0-75% ammonium sulfate precipitation, DEAE Sepharose Fast Flow ion exchange chromatography, Ultrogel HA chromatography and Sephacryl S-200 HR molecular sieve chromatography. To measure enzyme activity, synthetic dipeptide substrate (CBZ-arg-arg-AFC) with low molecular weight was employed as substrate. The molecular weight of the purified enzyme was approximately 80 kDa when determined by gel filtration on Sephacryl S-200 HR and 73 kDa when estimated by SDS-PAGE. The isoelectric point was 5.45. The activity of the purified enzyme was inhibited by metal chelating agesnts such as EDTA and 1.10-phenanthroline. The divalent cations, such as Ca$\^$2+/, Zn$\^$2+/, Fe$\^$2+/, Mg$\^$2+/ enhanced its activity. These results suggested that it was a metalloprotease. It had a narrow pH optimum of 6.5-7.5 with a maximum at pH 7.0 and a temperature optimum of 40.deg.C. It was stable at least for 1 week at 40.deg.C and maintained its activity for 24 hours at 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium dodecyl sulfate (SDS) and was inactivated in a dose-dependent manner. However, it was resistant to Triton X-100 and the activity was enhanced to 32.3% with treatment of 0.025% Triton X-100.

  • PDF