• 제목/요약/키워드: S-shape Nozzle

검색결과 84건 처리시간 0.025초

CFD를 이용한 부분흡입형 터빈 공력형상 설계 (Aerodynamic Shape Design of a Partial Admission Turbine Using CFD)

  • 이은석
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1131-1138
    • /
    • 2006
  • Aerodynamic shape design of a partial admission turbine using CFD has been performed. Two step approaches are adopted in this study. Firstly, two-dimensional blade shape is optimized using CFD and genetic algorithm. Initially, the turbine cascade shape is represented by four design parameters. By controlling the design parameters as variables, the non-gradient search is analyzed for obtaining the maximum efficiency. The final two-dimensional blade proved to have a more blade power than the initial blade. Secondly, the three-dimensional CFD analysis including the nozzle, rotor and stator has been conducted. To avoid a heavy computational load due to an unsteady calculation, the frozen rotor method is implemented in steady calculation. The frozen rotor method can detect a variation of the flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a better idea of wake loss mechanism starting from the lip of the nozzle than the mixing plane concept. Finally, the combination of two and three dimensional design method of the partial admission turbine in this study has proven to be a robust tool in development phase.

Side Jet 발생기의 유동특성에 관한 해석 (Numerical Analysis on the Flow Characteristics of Side Jet Thruster)

  • 홍승규;성웅제
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.27-31
    • /
    • 2001
  • For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful device as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. In this paper, the aerodynamic characteristics of the side jet device itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. Specifically attention is paid to the effect of the chamber shape between the straight nozzle and the bent nozzle by 90 degrees on the nozzle flow properties. The thrust magnitudes are compared between the two shapes. Whether the way the nozzle is bent at the joint affects the nozzle performance is also investigated. Effects of the length and the divergence angle of the nozzle on the thrust are also quantified among three different side jet nozzles.

  • PDF

Development of Electrospray Micro Thruster with Super-Hydrophobic PTFE Surface Nozzle Treated by Ar and Oxygen Ion Beam

  • Lee, Y.J.;Byun, D.Y.;Si, Bui Quang Tran;Kim, S.H.;Park, B.H.;Yu, M.J.;Kim, M.Y.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.877-880
    • /
    • 2008
  • In this article, in order to fabricate polymer based electrospray device with super hydrophobic nozzle we use PTFE(polyfluorotetraethylene) plate and PMMA(polymethylmethacrylate). To obtain the super hydrophobic surface nozzle, PTFE surface is treated by argon and oxygen plasma treatment process. And evaluate the treated surface, perform measuring contact angle, SEM(Scanning Electron Microscope) and AFM(Atomic Force Microscope). We compare the performance of the super hydrophobic PTFE surface nozzle with raw PTFE and PMMA surface nozzle. For the ion beam treated PTFE nozzle, the liquid doesn't overflow and it keeps initial position and meniscus shape. From these results, we expect in cease of superhydrophobic surface nozzle jetting becomes more stable and repeatable.

  • PDF

수중 노즐에서 발생하는 기포의 형상 및 음향 특성 연구 (Investigation on Shapes and Acoustic Characteristics of Air Bubbles Generated by an Underwater Nozzle)

  • 김종철;오준석;조대승
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.190-197
    • /
    • 2006
  • It is well known that the acoustic characteristics of the sea are significantly affected by bubbles which have their own inherent characteristics at the undersea. In this study, the shape and acoustic characteristics of air bubbles generated by an underwater nozzle are calculated numerically, and are measured with a high speed camera and a hydrophone at various air flow rates in the experimental apparatus. As a result of analysis, the shape calculated numerically well matched with measured values at low flow rates, but in case of relatively higher flow rates. the use of correction coefficient is needed for more accurate estimation of the bubble shape. And also the rising velocity of a single bubble is constant regardless of both the bubble size and the flow rate. and the acoustic signal generated when the bubble is produced by an underwater nozzle has the same characteristic of natural frequency of the bubble pulsation, and is agreed with Minnaert's equation if the correction coefficient is considered in accordance with the flow rate.

NOVEC가스 소화설비용 노즐 형상 설계에 대한 수치해석 (Numerical Analysis on Development of Nozzle Shape for NOVEC Gas Extinguishing System)

  • 윤정인;정경국;김지성;김성윤;노범석;최재혁
    • 해양환경안전학회지
    • /
    • 제24권7호
    • /
    • pp.939-944
    • /
    • 2018
  • 청정소화약제는 지구오존층 보호를 위해 발효된 몬트리올 의정서에 따라 할론 1211 및 할론 1310을 대체할 수 있는 약제를 말한다. 국 내외적으로는 청정소화약의 시스템 표준화와 성능평가가 수행되고 있다. 본 논문은 일반적인 청정소화약제 시스템을 바탕으로 다양한 노즐의 형상에 대한 모델링 및 수치해석을 수행하여 최적의 노즐 형상을 제안하였다. Type A와 B의 2가지 형상에 대한 노즐의 3차원 모델링을 통해 노즐의 분출속도가 개선될 수 있도록 하였다. 2가지 형상의 노즐에 대하여 유동해석을 실시하였으며 노즐의 홀 직경을 다르게 하여 가스속도 및 압력분포를 측정하였다. 측정결과 노즐 홀 수 및 직경에 따라 노즐출구에서 분출속도가 달라지는 것을 확인 할 수 있었으며 노즐 홀 직경에 관계없이 유량은 압력이 증가함에 따라 증가하는 경향을 나타내었다. 실험을 통해 얻어진 결과를 바탕으로 노즐 직경이 5 mm인 경우의 K-factor값이 $101.8l/min{\cdot}bar^{-0.5}$임을 확인하였으며, 최종적으로 노즐 홀 5 mm인 12개의 홀이 2층 구조로 되어 있는 형상의 노즐을 제안하였다.

횡류형 수직축 풍력터빈 개발에 관한 연구 (A Study on the Development of Cross-flow Type Vertical Axis Wind Turbine)

  • 황영철;최영도;김일수;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.493-493
    • /
    • 2009
  • Recently, small vertical axis wind turbine attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow type wind turbine is proposed for small wind turbine development in this study because the turbine has relatively simple structure and high possibility of applying to small wind turbine. The purpose of this study is to investigate the effect of the turbine‘s structural configuration on the performance and internal flow characteristics of the cross-flow turbine model using CFD analysis. The results show that guide nozzle should be adopted to improve the performance of the turbine. Optimization of the nozzle shape will be key-importance for the high performance of the turbine.

  • PDF

장방형 충돌수분류 냉각계의 국소열전달에 관한 연구 (A study on the local heat transfer in rectangular impinging water jet cooling system)

  • 이종수;엄기찬;최국광
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1395-1405
    • /
    • 1996
  • The purpose of this experimental research is to investigate the local heat transfer characteristics in the upward free water jet impinged on a downward flat plate of uniform heat flux. The inner shape of rectangular nozzle used was sine curve type and its contraction ratio of inlet to outlet area was five. Experimental parameters considered were Reynolds number, nozzle exit-flat plate distance, and level of supplementary water. Local Nusselt number was influenced by Reynolds number, Prandtl number, supplementary water level, and distance between the nozzle exit and flat plate. Within the impingement region, the Nusselt number has a maximum value on the nozzle center axis and decreases monotonically outward from center. Outside of the impingement region, on the other hand, the Nusselt number has a secondary peak near the position where the distance from nozzle center reaches four times the nozzle width. However if nozzle exit velocity exceeds 6.2 m/s, the secondary peak appears also in the impingement region. The empirical equation for the stagnation heat transfer is a function of Prandtl, Reynolds, and axial distance from the nozzle exit. The optimum level of supplementary water to augment the heat transfer rate at stagnation point was found to be twice the nozzle width.

케비테이션 제트 유동을 이용한 발전 시스템 (A Power-Generation System using Cavitation jet flow)

  • 나정수;이강주;이봉렬;주남식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.162.1-162.1
    • /
    • 2010
  • Cavitation phenomenon has long been a difficult problem that regarded as negative event to fluid machines or industrial facilities. In the latest, however, some engineers became to understand the power of cavitation and use it to cleaning wall after developing cavitation nozzle. In this paper, we introduce new concept for power-generation system using cavitation jet flow maid by nozzle and impulse turbine in vacuum condition. The vacuum needed to make cavitation is generated naturally by Torricelli's vacuum, 10.23m effective head drop without additional power. We analyzed water's boiling and the steam's mean free path according to vacuum purity levels for nozzles and turbine blades. The nozzles make water accelerate in the neck and boil in expansion section of the nozzles. The shape of the impulse turbine is designed for absorption of the molecule's kinetic energy of the steam.

  • PDF

점진적 팽창단조법에 의한 대형 노즐형제품의 성형공정 개발에 관한 실험적 연구 (An Experimental Study of Forming Process Development in Large Nozzle-Shaped Product Using the Incremental Forging Method for Expanding)

  • 박치용;양동열;이경훈;은일상
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.110-119
    • /
    • 1994
  • In this paper, a new forming process of large-size forgings of converged nozzle-shape is developed by the experimental study using the incremental forging method and combined forming method. The development of the forming process is focused on the manufacturing of large-size forgings by the press with medium load capacity. Various related processes are proposed and modelling experiments using plasticine are carried out. Thus, the incremental forging method for expanding is recommanded from the study of formability and forming load, etc. The selected process is then subjected to modelling experiments of lead and the design parameters such as preform for final process, die-width of the upper die and reduction amount of each stroke are determined. In order to verify the effectiveness of the selected process, 1/7 scale prototype experiment of the real material is carried out. Forgings of converged nozzle shape can be produced by the developed process within the limit loads and with the simple tools.

  • PDF

집속이온빔을 이용한 마이크로 노즐의 제작 (Machining of The Micro Nozzle Using Focused Ion Beam)

  • 김규환;민병권;이상조;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF