• 제목/요약/키워드: S-layer

검색결과 8,536건 처리시간 0.038초

Methanoplanus limicola S-Layer 당단백질 2차원 결정의 구조적 특성 (Structural Character of Two-Dimensional Crystal of the S-Layer Glycoprotein from Methanoplanus limicola)

  • 정강원;곽대오;주우홍
    • Applied Microscopy
    • /
    • 제24권1호
    • /
    • pp.102-113
    • /
    • 1994
  • A thin section of the methanogenic archaebacterium, Methanoplanus limicola, shows that the surface glycoprotein array (S-layer) is separated from plasma membrane by a distinct inter-space, approximately 4.0-6.0nm wide. We report our structural study of the S-layer by electron crystallographic techniques. Image analysis and thin sections of the S-layer treated with and without triton disclosed that retention of the single layer crystal requires the presence of detergent to avoid hydrophobic bonding.

  • PDF

Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향 (Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer)

  • 장희석;박상환;권혁보;최성철
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

Cd-free 태양전지를 위한 ZnS/CIGS 이종접합 특성 향상 연구 (Study of ZnS/CIGS Hetero-interface for Cd-free CIGS Solar Cells)

  • 신동협;김지혜;고영민;윤재호;안병태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.106.1-106.1
    • /
    • 2011
  • The Cu(In,Ga)Se2 (CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. Among Cd-free candidate materials, the CIGS thin film solar cells with ZnS buffer layer seem to be promising with 17.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, ZnS/CIGS solar cells still show lower performance than CdS/CIGS solar cells. There are several reported reasons to reduce the efficiency of ZnS/CIGS solar cells. Nakada reported ZnS thin film had many defects such as stacking faults, pin-holes, so that crytallinity of ZnS thin film is poor, compared to CdS thin film. Additionally, it was known that the hetero-interface between ZnS and CIGS layer made unfavorable band alignment. The unfavorable band alignment hinders electron transport at the heteo-interface. In this study, we focused on growing defect-free ZnS thin film and for favorable band alignment of ZnS/CIGS, bandgap of ZnS and CIGS, valece band structure of ZnS/CIGS were modified. Finally, we verified the photovoltaic properties of ZnS/CIGS solar cells.

  • PDF

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

Buffer layer의 표면 거칠기와 열처리조건이 GaN 에픽층의 품질에 미치는 영향 (Effects of Surface Roughness and Thermal Treatment of Buffer Layer on the Quality of GaN Epitaxial Layers)

  • 유충현;심형관;강문성
    • 한국전기전자재료학회논문지
    • /
    • 제15권7호
    • /
    • pp.564-569
    • /
    • 2002
  • Heteroepitaxial GaN films were grown on sapphire substrates in order to study the effects of the buffer layer's surface roughness and thermal treatment on the epitaxial layer's quality. For this, GaN buffer layers were grown at $550^{\circ}C$ with various TMGa flow rates and durations of growth, and annealed at $1010^{\circ}C$ for 3 min after the temperature was raised by 23 ~ $92^{\circ}C/min$, and then GaN epitaxial layers were grown at $1000^{\circ}C$. It has been found that the buffer layer's surface roughness and the thermal treatment condition are critical factors on the quality of the epitaxial layer. When a buffer layer was frown with a TMGa flow rate of $24\mu mole/min$ for 30 sec, the surface roughness of the buffer lather was minimum and when the thermal ramping rate was $30.6^{\circ}C/min$ on this layer, the successively grown epitaxial layer's crystalline and optical qualities were optimized with a specular morphology. The minimum full width at half maximum(FWHM) of GaN(0002) x-ray diffraction peak and that of near-band-edge(NBE) peak from a room temperature photoluminescence (PL) were 5 arcmin and 9 nm, respectively.

256 비트 대칭 SPN 블록 암호 XSB (256 bit Symmetric SPN Block cipher XSB)

  • 조경연
    • 한국산업정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.9-17
    • /
    • 2012
  • 본 논문에서는 암호와 복호 과정이 동일한 SPN 구조 256 비트 블록 암호 알고리즘인 가칭 XSB(eXtended SPN Block cipher)를 제안한다. XSB는 짝수 N 라운드로 구성하고, 1 라운드부터 N/2-1 라운드까지는 전함수를 적용하고, N/2+1 라운드부터 N 라운드까지는 후함수를 적용한다. 각 라운드는 키 합산층, 치환층, 바이트 교환층 및 확산층의 네 단계로 구성한다. 또한 전함수단과 후함수단 사이에 대칭 블록을 구성하는 대칭단을 삽입한다. 대칭단은 간단한 비트 슬라이스 대합 S-박스로 구성한다. 비트 슬라이스 대합 S-박스는 Square 공격, 부매랑 공격, 불능차분 공격 등의 공격을 어렵게 한다.

Characterization of Surface Layer Proteins in Lactobacillus crispatus Isolate ZJ001

  • Chen, Xueyan;Chen, Yang;Li, Xiaoliang;Chen, Ning;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1176-1183
    • /
    • 2009
  • Lactobacillus crispatus (L. crispatus) ZJ001 is highly adhesive to epithelial cells and expresses S-layer proteins. In this study, S-S-layer layer genes were sequenced and expressed in E. coli to characterize the function of proteins with this particular strain. L. crispatus ZJ001 harbored two S-layer genes slpA and slpB, and only slpA gene was expressed in the bacterium, as revealed by RT-PCR and immunoassays. The mature SlpA showed 47% amino acid sequence identity to SlpB. The SlpA and SlpB of L. crispatus ZJ001 were highly homologous at the C-terminal region to other Lactobacillus S-layer proteins, but were substantially variable at N-terminal and middle regions. Electron microscopic analysis indicated that His-slpA expressed in E. coli was able to form a sheet-like structure similar to the natural S-layer, but His-slpB formed as disc-like structures. In the cell binding experiments, HeLa cells were able to bind to both recombinant His-slpA and His-slpB proteins to the extent similar to the natural S-layer. The cell binding domains remain mostly in the N-terminal regions in SlpA and SlpB, as shown by high binding of truncated peptides SlpA2-228 and SlpB2-249. Our results indicated that SlpA was active and high binding to HeLa cells, and that the slpA gene could be targeted to display foreign proteins on the bacterial surface of ZJ001 as a potential mucosal vaccine vector.

Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상 (Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer)

  • 양기정;심준형;손대호;이상주;김영일;윤도영
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.93-98
    • /
    • 2017
  • 본 실험에서는 $Cu_2ZnSnS_4$(CZTS) 태양전지의 흡수층 상부에 다양한 조성을 갖는 $Zn(O_x,S_{1-x})$ 버퍼층을 적용하여 특성 변화를 살펴보았다. $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$ 그리고 $Zn(O_{0.17},S_{0.83})$의 4가지 단일막의 경우, 전자-정공의 재결합 억제에 유리한 밴드갭 구조를 나타내는 $Zn(O_{0.76},S_{0.24})$ 버퍼층을 소자에 적용했다. $Zn(O_{0.76},S_{0.24})$ 버퍼층을 소자에 적용 시, 흡수층으로부터 S가 버퍼층으로 확산되어 소자 내에서의 버퍼층은 $Zn(O_{0.7},S_{0.3})$의 조성을 나타냈다. CdS 버퍼층의 $E_V$보다 낮은 에너지 준위를 갖는 $Zn(O_{0.7},S_{0.3})$ 버퍼층은 전자-정공 재결합을 효과적으로 억제하기 때문에 CZTS 태양전지의 $J_{SC}$$V_{OC}$ 특성을 향상시켰다. 이를 통해 CdS 버퍼층이 적용된 CZTS 태양전지의 효율인 2.75%가 $Zn(O_{0.7},S_{0.3})$ 버퍼층 적용을 통해 4.86%로 향상되었다.

층상형 혼합광물의 상호작용계수의 계산 및 응용 (Calculation of Interaction Parameters in Mixed Layer Minerals and their Application)

  • 이성근;김수진
    • 한국광물학회지
    • /
    • 제10권2호
    • /
    • pp.97-104
    • /
    • 1997
  • Based on the method of determination for relative stability of each phase from the difference among the interaction parameters of the phases consisting the mixed layer, the types of interactions between layers were specified and interaction parameter between layers in ordered domain was analytically derived as a function parameter between layers in ordered domain was analytically derived as a function of not only temperature and mole fraction of layers but also ordering parameter. Interaction parameter between the different layers in ordered phase, L is as follows:{{{{ {L }_{1 } (X,Q,T)= { C} over { Q} -4(1-2Q) { L}^{2 } - { RT} over {2} ln { 1} over {2 } - { 2RT} over { { X}_{ s} } ln { { 4QX}`_{s } ^{2 } } over {(1- { X}_{s }- { QX}_{s })( { X}_{s }- {QX }_{s } ) } }}}}L2 is the interaction parameter between ordered and disordered phase in domain and is the mole fraction of the domain which represent the infinite length of mixed layer mineral and Q and C are the reaction progress parameter and arbitrary constant, respectively. This equation was used for the I/S mixed layer clay minerals to infer the relative stability of R1 type I/S mixed layer in the temperature range from 373K to 450K. The result of calculation suggest that, owing to the decrease in interaction parameter with increasing temperature. The interaction parameter decreases more rapidly with decreasing mole fraction of smectite in domain, which is consistent with the fact that the probability of finding the series smectite layer is lo in the domain with small mole fraction of smectite layers in natural system.

  • PDF

Development of a New Double Buffer Layer for Cu(In, Ga) $Se_2$ Solar Cells

  • Larina, Liudmila;Kim, Ki-Hwan;Yoon, Kyung-Hoon;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.152-153
    • /
    • 2006
  • The new approach to buffer layer design for CIGS solar cells that permitted to reduce the buffer absorption losses in the short wavelength range and to overcome the disadvantages inherent to Cd-free CIGS solar cells was proposed. A chemical bath deposition method has been used to produce a high duality buffer layer that comprises thin film of CdS and Zn-based film. The double layer was grown on either ITO or CIGS substrates and its morphological, structural and optical properties were characterized. The Zn-based film was described as the ternary compound $ZnS_x(OH)_y$. The composition of the $ZnS_x(OH)_y$ layer was not uniform throughout its thickness. $ZnS_x(OH)_y$/CdS/substrate region was a highly intermixed region with gradually changing composition. The short wavelength cut-off of double layer was shifted to shorter wavelength (400nm) compared to that (520 nm) for the standard CdS by optimization of the double buffer design. The results show the way to improve the light energy collection efficiency of the nearly cadmium-free CIGS-based solar cells.

  • PDF