• Title/Summary/Keyword: S-allyl-L-cysteine sulfoxide

Search Result 4, Processing Time 0.02 seconds

Antimicrobial Activity of Chemical Substances Derived from S-Alk(en)yl-L-Cysteine Sulfoxide (Alliin) in Garlic, Allium sativum L.

  • Choi, Mi-Kyung;Chae, Kyung-Yeon;Lee, Joo-Young;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Garlic (Allium sativum L.) contains a specific sulfur compound, the S-allyl derivative of L-cysteine sulfoxide, and has long been known for its antimicrobial activity against various microorganisms, including bacteria, fungi, and protozoa. The principal antimicrobial compound of garlic is S-allyl-L-propenethiosulfinate (allicin) which is generated by an enzyme, alliinase (L-cysteine sulfoxide lyase), from S-allyl-L-cysteine sulfoxide (alliin). This compound exists exclusively in Allium as a major non-protein sulfur-containing amino acid. S-Allyl-L-propenethiosulfinate belongs to the chemical group of thiosulfinates and is a highly potent antimicrobial. The potency of garlic extract is reduced during storage since thiosulfinates are unstable and are degraded to other compounds some of which do not have antimicrobial activity. Diallyl polysulfides and ajoene are sulfur compounds derived from allicin that do possess antimicrobial activity. It was recently found that garlic becomes antimicrobial on heating at cooking temperatures, and that the compound responsible for this is allyl alcohol, which is generated from alliin by thermal degradation.

Analysis of Volatile Organosulfur Compounds in Korean Allium Species (국내산 Allium속(마늘, 양파, 대파)의 휘발성 함유황 유기화합물 분석)

  • Song, Hyun-Pa;Shim, Sung-Lye;Jung, In-Sun;Kim, Jun-Hyeong;No, Gi-Mi;Seo, Hye-Yeong;Kim, Dong-Ho;Kim, Kyong-Su
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.929-937
    • /
    • 2009
  • We identified volatile organic compounds in Korean Allium species. Volatile organic components in three Korean Allium species, dried garlic, dried onion, and dried Welsh onion, were extracted using a simultaneous distillation and extraction (SDE) method and identified by GC/MS analysis. The numbers of volatile compounds were 48, 32, and 33 in the three species, respectively. In dried onion, the major compounds were dipropyl trisulfide, methyl propyl trisulfide, and propanethiol. (Z), (E)-propenyl propyl trisulfide, methyl propyl trisulfide, and dipropyl trisulfide were detected at high levels in Welsh onion. In dried garlic, presence of the allyl group identified characteristic volatile organosulfur compounds including diallyl disulfide and diallyl trisulfide. Qualitative and quantitative analysis of volatile compounds in three Korean Allium species showed that sulfur-containing compounds were dominant, and allyl groups derived from (+)-S-(2-propenyl)-L-cysteine sulfoxide (ALLYL CSO, alliin) were more abundant in dried garlic, than in other materials.

Isolation and Purification of Garlic Specific Organic Compounds (마늘 특이 유기화합물의 분리 및 정제)

  • Oh, Tae-Young;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.553-557
    • /
    • 2011
  • Garlic specific organic compounds were separated and purified using a recycling preparative high-performance liquid chromatography (HPLC) from blanched garlic cloves. Identification of the compounds involved comparing the previously reported HPLC retention times as well as other identification methods including $^1H$- and $^{13}C$-nuclear magnetic resonance and liquid chromatography-mass spectrometry. The yields of garlic specific organic compounds were 12.2, 42.5, 1.6, 1.2, and 4.8% on wet weight basis of garlic for alliin(S-allyl-L-cysteine sulfoxide), isoalliin(S-1-propenyl-L-cysteine sulfoxide), ${\gamma}$-glutamyl-S-allylcysteine, ${\gamma}$-glutamyl-S-1-propenylcysteine and ${\gamma}$-glutamyl-phenylalanine, respectively. All the compounds, except for ${\gamma}$-glutamylphenylalanine, contained sulfur.

Garlic flavor (마늘 flavor)

  • Kim, Mee Ree;Ahn, Seung Yo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.2
    • /
    • pp.176-187
    • /
    • 1983
  • Volatile flavor components of garlic and factors which influence on its flavors were reviewed. Growth, storage and processing conditions influence on the flavor intensity of garlic. To intensify garlic flavors, it is desirable that sufficient sulfate nutrition be supplied to the soil of growing garlic and that the suggested proportions of mineral composition and water content be considered. And to maintain the flavor intensity of post harvested garlic, flavor losses taken place during over inter storage mainly due to respiration, sprout and decay, have to be minimized. Among the various storage methods, combination method of post harvest hot-air drying and low temperature ($0^{\circ}C$), low humidity (RH 70-75%) is useful. The flavor of processed garlic is very much decreased as compared with that of fresh, and the decreasing rate of flavors depends on processing method. The synthetic garlic flavors were obtained by three types based on intermediate thiosulfinate, S-alk(en) yl-$\small{L}$-cyteine sulfoxlde-alliinase fission products and $\small{L}$-5-alk (en)yl thiomethylhydantoin ${\pm}$ S-oxides. These synthetic garlic flavors may be promised to be applied to food additives.

  • PDF