• Title/Summary/Keyword: S-Shaped Duct

Search Result 23, Processing Time 0.017 seconds

Numerical Studies on the S-Shaped Duct Flow for Compressors (압축기용 S형 덕트 유동에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.40-46
    • /
    • 2004
  • This paper is concerned with the numerical analyses of an S-shaped duct for the inter-channel between compressor spools. For the compactness and lightweight of an engine, the length of the S-shaped duct is desired to be minimized. Shortening the S-shaped duct, however, flow separation is likely to occur. Numerical investigation using a three-dimensional Navier-Stokes flow solver was performed to determine the availability of the minimization of an S-shaped duct. Computations were performed introducing the experimental data as the inlet flow condition of the OGV in determining the minimum length of the S-shaped duct. Also, the leaning effect of the OGV which assists the flow to turn radially inward was studied adopting mixing-plane method to consider the rotor/OGV interaction.

Numerical Studies on the S-Shaped Duct for Compressors (압축기용 S형 덕트에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.621-626
    • /
    • 2003
  • This paper is concerned with the numerical analyses of an S-shaped duct for the inter-channel between compressor spools. For the compactness and lightweight of an engine, the length of the S-shaped duct is desired to be minimized. Shortening the S-shaped duct however, flow separation is likely to occur. Numerical investigation using a three-dimensional Navier-Stokes flow solver has been performed to determine the availability of the minimization of an S-shaped duct. Computations are performed introducing the experimental data as the inlet flow condition of the OGV in determining the minimum length of the S-shaped duct. Also, the leaning effect of the OGV which assists the flow to turn radially inward are studied adopting mixing-plane method to consider the rotor/OGV interaction.

  • PDF

A Study on the Influence of S Shaped Annular Duct on the Centrifugal Compressor Performance (S자형 환형덕트가 원심압축기 성능에 미치는 영향에 관한 연구)

  • 정주현;전승배;김승우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.64-73
    • /
    • 1998
  • In twin spool aero-engine, there may be a S shaped annular duct between high pressure and low pressure spools. The flow passing this S shaped duct experiences the flow acceleration and deceleration due to the convex and concave surface of the duct as well as the increase of blockage according to the boundary layer growth along the surfaces. So, the high pressure compressor which is located behind the S shaped duct is influenced by the non-uniform flow field generated by the geometry of inlet duct. To study the influence of the S shaped duct on the centrifugal stage, performance tests were implemented for the compressor with straight cylindrical inlet duct and with S shaped inlet duct, respectively. The test results showed that the performance, such as pressure ratio and efficiency, of the compressor with S shaped duct was worse than that of the compressor with cylindrical duct. And the compressor with S shaped duct had reduced maximum flow rate around design speed. To investigate the cause of performance degradation, flow anlaysis was performed for the impeller in front of which is located S shaped annular duct. The result of CFD showed the strong acceleration of the flow in the axial direction around the inducer tip region which caused the increase of relative mach number and the decrease of incidence angle of the flow.

  • PDF

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

A study on Flow Characteristics of the Semi-Circular inlet S-Shaped Intake at Various Angle of Incidence (입사각에 따른 반원형 입구형상 S-Shaped Intake에 대한 유동특성 연구)

  • Lee, Jihyeong;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • Air intakes are an essential component of aircraft engines. They are mainly used to offer uniform airflows to engine faces. Fighter aircraft have to mask the engine face inside the fuselage in order to reduce the Radar Cross Section(RCS). Therefore, offset intakes like a S-Duct are one of promising components for this purpose. During a fight, it is unavoidable that the flow will enter the intakes at some face angles other than zero. In this case, the performance of the aircraft engine will be influenced to the angle of incidence. In this study, the CFD analysis of the semi-circular S-Duct with AR(0.5,0) is performed to investigate the influence of the angle of incidence on the performance of the S-Duct using a distortion coefficient. To consider the adverse pressure gradient, a $k-{\omega}$ SST turbulence model is employed. The secondary flow and flow separation are observed for all computational cases. It is found that the positive incidence angle produces the best performances.

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

A Study on the improvement of the audio acoustic characteristics by the condition of the duct design (덕트의 설계 조건에 따른 오디오 음향환경 개선에 관한 연구)

  • 김대근
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.70-73
    • /
    • 2000
  • In this paper we conducted research about the speaker's acoustic characteristics by the condition of the duct. It is expanding the bass ton play frequency as interfere two frequencies each other which originate from the speaker's back and front side using duct as attach the duct of round shaped or square at the encloser. This is not making of bass ton range using interference,. The structure of the duct which using the experiment is round shape. And we confirmed that can expand the limit of bass ton play as compare the actual experimental wave that after simulation of play frequency range as lenth change

  • PDF

Effect of Well Curvature on Curved Duct Flows

  • Hong Seung-Gyu;Heo Gi-Hun;Lee Gwang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-135
    • /
    • 1997
  • Effect of wall curvature on flow characteristics is studied for mildly and strongly curved duct flows. The ducts are S-shaped, and the flow is partially blocked at the rear of the downstream. The presence of blockage in combination with curvature generates secondary flows on the concave surface; the magnitude of the secondary flow being dependent on the degree of wall curvature. Objectives are to compare the flow structures for mild and strong cases and to illuminate the changes in flow structure as the flow turns. Sensitivity on numerical solutions due to different inflow boundary conditions is also examined.

  • PDF