• Title/Summary/Keyword: S-Band Transmitter

Search Result 84, Processing Time 0.03 seconds

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

  • An, Dan;Lee, Mun-Kyo;Lee, Sang-Jin;Ko, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band millimeter-wave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_{1dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a $P_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a $P_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

A Study on the Stable 20 Watt High Power Amplifier for INMARSAT-C (INMARSAT-C형 위성통신단말기를 위한 안정한 20 Watt 고출력 증폭기에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.281-290
    • /
    • 1999
  • This paper presents the development of a high power amplifier for a transmitter of INMARSAT-C operating at L-band(1626.5∼1646.5 MHz). To simplify the fabrication process, the whole system is designed of two parts composed of a driving amplifier and a high power amplifier The HP's AT-41486 is used for driving part and the SGS-THOMSON microelectronics' STM1645 is used the high power amplifier. The SSPA(Solid State Power Amplifier) was fabricated by the both circuits of RF and temperature compensation in aluminum housing. The realized SSPA has more than 36 dB for small signal within 20MHz bandwidth, and the voltage standing wave ratios(VSWR) of input and output Port are less than 1.5:1, respectively. The output Power of 42.2 dBm is achieved at the 1636.5 MHz. These results reveal a high power amplifier of 20 Watt which is the design target.

  • PDF

Portable system module for wireless based on mountain climbing safety using 447 MHz band FSK (447MHz 대역 FSK방식을 이용한 무선 통신 기반 산행 안전을 위한 휴대 시스템)

  • Lim, Jae Don;Kim, Jung Jip;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1428-1433
    • /
    • 2019
  • Interest in mountain accidents among the technical trends of disasters in Korea is increasing continuously. When accidents occur, the most common methods are location tracking and accident reporting using smartphones, and rescue activities are being carried out by using them. In this paper, we proposed an improvement of wireless safety system for mountain climbing safety using 447 FSK. Using the 447 MHz band transmitter / receiver, it accumulates position coordinates and data through position transmission and rescue signal transmission in case of anomalies. If a sender is out of the threshold of the set area range, a danger warning notification can be generated to quickly exit the danger zone. Provide services. In addition, it is considered that the health condition of the sender is continuously checked and the receiver is warned when the specified threshold is exceeded, so that it is possible to respond to the sender's disaster.

Analysis of Indoor Channel Modeling in Millimeter-Wave Band (밀리미터파 대역의 실내 채널 모델링 분석)

  • Lee, Won-Hui;Pyo, Seongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.53-58
    • /
    • 2016
  • A ray tracing method to analyze the propagation channel characteristics for a millimeter-wave indoor wireless communication system is presented. Reflected rays from planar as well as rough surfaces are included. Transmitted rays though a thin dielectric slab are considered. Maps representing received power levels and RMS delay spread from a transmitter in a rectangular room are shown. The received power levels in the empty room for bottom's roughness factors of 0 and 0.13 are represented. The simulation results are well consistent with the calculation of Friis equation with reflection coefficient. Any size of furniture the shape of plane form can be positioned anywhere in the room.

Design Parameters of a RF Transceiver for Sensor Nodes (센서노드용 RF 송수신기의 설계 파라미터)

  • Kang, Sang-Gee;Choi, Heung-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.854-859
    • /
    • 2009
  • Many pilot projects are developed using USN(Ubiquitous Sensor network). Recently USN has more attention to be used for the applications of circumstance monitoring. In order to acquire information from sensor nodes, sensor nodes need a RF transceiver. In this paper we describe the design of a RF transceiver, based on IEEE 802.15.4, for sensor nodes operating in 2.4GHz frequency band. The architecture to be implemented and the electrical performance specifications satisfied IEEE 802.15.4 are presented. The noise figure of a receiver, selectivity, phase noise of a frequency synthesizer, transmitter's linearity and spectrum mask are derived as a design parameters from the specifications of IEEE 802.15.4.

Flicker Prevention Using Byte-Inversion in OOK Modulated Visible Light Data Transmission (OOK변조된 가시광 데이터전송에서 바이트반전을 이용한 플리커 방지)

  • Lee, Junho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.579-585
    • /
    • 2020
  • In this study, we used byte-inversion transmission method to prevent the flicker of lighting source in a visible light data communication link. In the transmitter, the non-return-to-zero (NRZ) signal with 9.6 kbps was on-off keying (OOK) modulated with a 100 kHz square wave carrier and byte-inversion signal was added after each byte to make the average optical power of the light-emitting diode (LED) constant. In the receiver, we used a band-pass filter to eliminate the interference of the 120 Hz noise which was induced from the adjacent light lamps, and an OOK demodulator to recover the original NRZ signal This scheme is useful in constructing wireless data networks using the illumination of visible light lamps.

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim;Sang-Rok Moon;Minkyu Sung;Joon Ki Lee;Seung-Hyun Cho
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.193-202
    • /
    • 2023
  • We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

Transmission of 200-Gb/s 2-channel OTDM-PAM4 Signal Based on CSRZ Pulse Generated by Mach-Zehnder Modulator (마하 젠더 변조기로 생성된 CSRZ 펄스 기반의 200 Gb/s OTDM-PAM4 신호의 전송)

  • Sunghyun Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.151-156
    • /
    • 2023
  • We propose to implement cost-effectively a high-speed short-haul interconnect by transmitting a 200-Gb/s/λ two-channel optical time-division-multiplexed signal generated by a carrier-suppressed optical pulse, which improves the robustness of the multiplexed signal to chromatic dispersion. The multiplexed 200-Gb/s signal is generated in the transmitter by combining two 100-Gb/s 4-level pulse-amplitude-modulated signals (generated using the optical pulse and two Mach-Zehnder modulators). After the signal is transmitted over a fiber, it is amplified by a semiconductor optical amplifier and detected by a photodiode. The amplified spontaneous emission noise is eliminated by an optical band-pass filter. The transmitted signal is reconstructed by a 2 × 2 multiple-input multiple-output equalizer, which compensates for crosstalk. Due to the use of the carrier-suppressed optical pulse, the 200-Gb/s signal can be transmitted over fiber with a chromatic dispersion of 40 ps/nm.

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal

  • Wonggeeratikun, A.;Noppanakeepong, S.;Leelaruji, N.;Hemmakorn, N.;Moriya, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1648-1653
    • /
    • 2003
  • The paper studies effect of quasi-periodic or airplane flutter phenomenon on television broadcasting signal. Airplane flutter is a very important problem. It causes the receiving antenna to receive both direct signal by the Tx (Transmitter antenna) and reflected signal scattered by the airplane with phase delay. The sum of two signals results in fading, sometime collapse and distortion of picture on TV screen. We performed measurement and modeling this phenomenon on TV signal when the airplane flew across and range Tx and Rx (Receiver antenna). The frequency 60.75MHz (Aural frequency of CH3) is used under tests. A single scatter multipath model is introduced. It is used to duplicate some of the measured data and show the dependence of power variation on the airplane fluttering. The fluctuation of the airplane flutter phenomenon was calculated to be around 2-4dB. The Yaki antenna is used for improving airplane flutter problem because it can make high gain and high directivity.

  • PDF

Design of Maritime Satellite Communication Systems Sharing Frequency with DVB-S2 (DVB-S2와 주파수 공유하는 해양 위성 통신 시스템 설계)

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Yu, Heejung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • In this paper, the Ka-band maritime satellite communication systems for mobile terminals are proposed. The design includes the link budget analysis, determination of modulation and coding schemes and the overall structure of a transmitter. To avoid the harmful effects on the existing DVB-S2 services, the proposed maritime satellite system using the same spectrum with DVB-S2 at the same time employs the very wideband spreading transmission. Additionally, omni-directional low-gain antennas should be equipped in a mobile terminal to reduce the system cost. These two considerations limit the maximum transmission rate of the proposed system. Due to the limitations, the proposed system includes 36 dB or 39 dB spreading gain depending on the modulation scheme and a link-adaptive repetition method depending on the level of rain attenuation. To support short packets with minimal performance loss, the turbo code used in 3GPP instead of LDPC(low density parity check code) is adopted. By combining them, the overall structure of low-rate maritime satellite communication system is designed.