• Title/Summary/Keyword: S-파속도

Search Result 571, Processing Time 0.027 seconds

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Analysis of geological conditions and water bearing zones in front of tunnel face using TSP (TSP탐사를 이용한 터널 굴착면 전방 지질상태 및 함수대 분석)

  • Kyounghak Lim;Yeonjun Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.373-386
    • /
    • 2023
  • To analyze the prediction of geological conditions and water-bearing zones, TSP was performed in the collapse zone of the fault zone. The results of the TSP were verified by comparing them to the face mapping results of the prediction zone. The rock quality prediction result of the TSP had an error of about 3 to 10 meters compared to the face mapping result, but the overall rock quality change and ground condition were analyzed to be relatively similar. In the water-bearing zones of the face mapping results, the Vp/Vs ratio ranges from 1.79 to 2.37 and the Poisson's ratio ranges from 0.27 to 0.39. In the sections other than the water-bearing zones, the Vp/Vs ratio ranges from 1.61 to 1.89, and the Poisson's ratio ranges from 0.19 to 0.3. As a result of analyzing the Vp/Vs ratio and Poisson's ratio in the water-bearing zones, it is analyzed that the sections with a Vp/Vs ratio of 2.0 or more and a Poisson's ratio of 0.3 or more have a high possibility of being water-bearing zones.

The Velocity Analysis of Woven Glass Fiber Composites Using Cross-correlation Properties (상호상관성를 이용한 망상형 유리섬유 복합체의 속도분석 연구)

  • Lee, Y.H.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.18-24
    • /
    • 1994
  • This paper discusses experimental results obtained by the potentiality of cross-correlation function as a tool for analyzing propagation of wave in an aluminum and a woven glass fiber composite. Each propagated wave has its own characteristic time delay, and examination of the cross-correlation of input and output signal give the most proper wave velocity and significant path. Using the above distinctive features, we observed the propagation velocity for the aluminum alloy and a woven glass fiber composite more acurately and easily then the common methods. The fiber locations of this composite also determined by the basis of these results.

  • PDF

Moveout Velocities and Effective Anellipticity of the Crust in the Korean Peninsula (한반도 지각의 무브아웃 속도 및 유효비타원율 시험적 산출)

  • Kim, Ki Young;Park, Iseul;Byun, Joongmoo;Lee, Jung Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.96-99
    • /
    • 2017
  • Virtual source data were produced by applying the seismic interferometry to the 2002 experimental seismic refraction data. Using the data, moveout velocities and effective anellipticity were experimentally computed for the crust at eight sites in the Korean peninsula. The moveout velocities of reflection events at approximate Moho depths were yielded to be $6.30{\pm}0.25km/s$ using near-offset traveltimes. Expanding the Taylor approximation to the $3^{rd}$ term for far-offset traveltimes, the effective anellipticity parameters were computed to be $0.18{\pm}0.07$ for the crust material.

Evaluation of dynamic ground properties using laterally impacted cross-hole seismic test (횡방향 발진 크로스홀 탄성파 시험을 이용한 지반의 동적 특성 평가)

  • Mok Young-Jin;Sun Chang Guk;Kim Jung-Han;Jung Jin-Hun;Park Chul-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.155-175
    • /
    • 2005
  • Soil and rock dynamic properties such as shear wave velocity (VS), compressional wave velocity (VP) and corresponding Poisson's ratio ( v ) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as VS, VP and v with depth were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

  • PDF

Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks. (한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교)

  • 송무영;황인선
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.21-37
    • /
    • 1993
  • In order to investigate the correlation of sedimentary rock properties. specific gravity, porosity, water content, sonic wave velodty, and point4oad strength index of core samples of limestones, sandstones and shales were measured. The relationships between density and velocity show $V_p=16300d-38719.3,{\;}V_s1896.4d-29225.1$ of regression equation for sandstones and $Vp=4085d-10264.8,{\;}V_s=3519d-7841.3$ for shales and <$Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$ for limestones. Seismic wave velocity of shales which have high density is lower than that of sandstones, and this seems to be an effect of bedding in shale. P-wave velocity and S-wave velocity of limestones, sandstones and shales show the linear relationships as a whole. The regression equations are respectively calculated V_s=0.26V_p+1041.6m/sec,{\;}V_s=0.43V_p+424.2m/sec,{\;}and{\;}Vs=0.51V_p+261.9m/sec$ and the correlation coefficients of the velocity show r= 0.86 in sandstones, r= 0.75 in limestones and r=0.86 in shales. According to the point4oad strength test for limestones, point4ord strength anisotropy was not so dear even though the specimens show generally the banded structure. Variations of dip angle of bedding whihin the range $30^{\circ}-60^{\circ}$ does not have much influence upon the diametral strength index and axial strength index. From the result of point load test, P-wave velocity increases with point4ord strength index but the regression equations are $V_p=98.5lI{s_d}+4082.1m/sec,{\;}V_p=106.41{s_a}+3954m/sec$ and their correlation coefficient is low.

  • PDF

Weathering Characteristics of Granite by Freeze-Thaw Cyclic Test (동결-융해 시험에 의한 화강암의 풍화 특성 연구)

  • Park, Yeon-Jun;You, Kwang-Ho;Yang, Kwang-Yong;Woo, Ik;Park, Chan;Song, Won-Kyung
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.215-224
    • /
    • 2003
  • Weathering in nature was simulated by freeze-thaw cyclic test which represents mechanical weathering. Measured physical properties were elastic wave velocities, absorption rate, volume change and weight change. Uniaxial compression tests were also conducted before and after the weathering tests. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities, uniaxial compression strength and Young's modulus were clearly decreased as weathering progresses. Test result can be used for the assessment of long-term stability of rock slopes.

Numerical Analysis of Dam-Break Waves against an Isolated Obstacle (장애물을 고려한 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.169-173
    • /
    • 2011
  • 본 연구에서는 RANS를 지배방정식으로 하는 3차원 수치모의를 통해 댐 붕괴로 인한 3차원적인 흐름 특징이 지배하는 댐 직하류에서 고립된 장애물로 인한 댐 붕괴파의 전파현상과 이동상 수로에서의 붕괴파의 전파현상, 특히 붕괴파의 비정상성과 불연속성, 붕괴파와 반사파의 영향, 상류 및 사류의 흐름의 혼재와 같은 복잡한 현상을 포함하는 붕괴파의 전파를 해석하였다. 장애물로 인한 댐 붕괴파의 전파 해석 결과, 댐의 순간적인 붕괴로 인해 붕괴파가 형성되고 붕괴파가 장애물에 부딪치면 반사파가 발생하며 이는 다시 수로에 부딪치며 반사되는 과정에서 사류와 상류 및 도수현상이 발생하는 복잡한 흐름 양상을 보인다. 이동상 수로에서의 댐붕괴파 해석 결과 붕괴파 전파는 고정상 수로에서의 붕괴파 전파에 비해 그 전파속도가 느리게 형성되었다. 기존 수리실험 결과와 비교 하였을 때 본 모의결과는 국부적인 수면진동의 모의에서 다소 오차가 발생하고 있으나 대체로 그 경향성은 잘 추적하고 있다.

  • PDF

P- and S-wave seismic studies in the Ulsan fault zone near Nongso-Eup (농소읍 부근 울산단층대에서의 P파 및 S파 탄성파 조사 연구)

  • Lee, Chang-Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.95-100
    • /
    • 2006
  • To reveal subsurface structures of the Ulsan fault, seismic data were recorded along a 750-m long line near Nongso-Eup in Ulsan. P and S waves were generated simultaneously by impacting a 5 kg sledgehammer on a tilted plate. The data were received by 16 10-Hz 3-component geophones at 3 m intervals. Refracted P waves were inverted using the tomography method. Dip moveout and migration were applied to reflection data processed following a general sequence. Four layers were identified based on P-wave velocities and P- and S-wave stacked image. From top to bottom, the P-wave velocity of each layer ranges in $300{\sim}1100\;m/s$, $1100{\sim}1700\;m/s$, $1700{\sim}2700\;m/s$, and greater than 2700 m/s. The corresponding thickness of the top three layers averages 3.9 m, 5.9 m, 4.4 m, respectively. The S-wave stack section is effective to define subsurface structures shallower than 10 m.

  • PDF

Application of One-Sided Stress Wave Velocity Measurement Technique to Evaluate Freeze-Thaw Damage in Concrete (콘크리트 동결-융해 손상의 비파죄 평가를 위한 One-Sided 응력파 속도 측정기법의 적용에 관한 연구)

  • Lee, Joon-Hyun;Park, Won-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.269-275
    • /
    • 2000
  • It is well recognized that damage resulting from freeze-thaw cycles is a serious problem causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a $400{\times}350{\times}100mm$ concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  • PDF