• Title/Summary/Keyword: S-파속도

Search Result 571, Processing Time 0.025 seconds

A case study of 3D seismic reflection imaging in an area of ground subsidence (지반 침하지역에서의 3차원 탄성파 반사법에 의한 지하구조 영상화 사례)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.158-172
    • /
    • 2000
  • In order to visualize mine cavities, 3D seismic reflection data were acquired at the ground subsidence sites near Nampung coal mine area, Neukguri, Dogye, Samchuck. Full range 3D array with complete range of azimuths on the bins was considered in the data acquisition design. Because of poor S/N data, we estimated the stacking velocities by CVS method, and we estimated the shot and receiver statics on the shot and receiver stack data. We could confirm that features of ground collapse that were expected from the subsidence. In order to visualize the cavities, we need to apply more sophisticated processing schemes, such as velocity analysis, residual statics correction.

  • PDF

Consideration of the Relationship between Independent Variables for the Estimation of Crack Density (균열밀도 산정을 위한 독립 변수 간의 관계 고찰)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.137-144
    • /
    • 2024
  • The purpose of this paper is to analyze the significance of independent variables in estimating crack density using machine learning algorithms. The algorithms used were random forest and SHAP, with the independent variables being compressional wave velocity, shear wave velocity, porosity, and Poisson's ratio. Rock samples were collected from construction sites and processed into cylindrical forms to facilitate the acquisition of each input property. Artificial weathering was conducted twelve times to obtain values for both independent and dependent variables with multiple features. The application of the two algorithms revealed that porosity is a crucial independent variable in estimating crack density, whereas shear wave velocity has a relatively low impact. These results suggested that the four physical properties set as independent variables were sufficient for estimating crack density. Additionally, they presented a methodology for verifying the appropriateness of the independent variables using algorithms such as random forest and SHAP.

The Solvolytic Reaction Mechanism of p-Substituted Benzyl Bromides (파라-치환 브롬화 벤질의 가용매 분해반응 메카니즘)

  • Lee, Ik Chun;Eom, Tae Seop;Sung, Dae Dong;Lee, Jong Pal;Park, Hyeon Seok
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 1990
  • Solvolyses of p-substituted benzyl bromides have been studied in dimethylsulfoxide-water and N,N-dimethylformamide-water mixtures by kinetic method. To determine the ionizing power, Y and the nucleophilicity, $N_{BS}$, the solvolyses of 1-adamantyl halides, t-butyl halides, and methyl tosylate in the same solvent mixtures have been investigated. The solvatochromic parameters for each dimethylsulfoxide-water mixtures have been determined by substituting into the Taft's linear solvatochromic energy relationships with measured $ν_{max}$. The solvolyses of p-substituted benzyl bromides have been found to proceed by borderline mechanism in which bond formation is more advanced than bond cleavage in the transition state based on the m, l values and ${\beta},{\rho}_s$, values.

  • PDF

A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve (신뢰성 있는 분산곡선의 결정을 위한 수동표면파 측정 및 분석기법의 제안)

  • Yoon, Sung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.47-60
    • /
    • 2007
  • Conventional active surface wave measurements performed using a transient or continuous source are often limited in the maximum depth of penetration due to the difficulty of generating low-frequency energy with reasonably portable sources. This limitation may inhibit accurate seismic site response calculations because of the inability to define deeper subsurface structure. By measuring surface wave generated by passive sources including microtremors and cultural noise, it is possible to overcome this problem and develop soil stiffness profiles to much larger depth. Reliability of dispersion estimates from the passive surface wave measurements is critical to present reliable shear wave velocity profiles and can be improved by the measurements and analyses of passive surface waves based on correct understanding of systematic errors included in passive dispersion data. In this study, the systematic errors caused by poor wavenumber resolution and energy leakage into sidelobes in passive tests are mainly explored. Recommendations for reliable passive surface wave measurements and dispersion estimates are presented and illustrated at a site in San Jose, California, U.S.

ESTIMATION OF INTRINSIC WAVE PARAMETERS AND MOMENTUM FLUXES OF MESOSPHERIC GRAVITY WAVES OVER KOREA PENINSULA USING ALL-SKY CAMERA AND FABRY-PEROT INTERFEROMETER (전천 카메라와 페브리-페로 간섭계 자료를 이용한 한반도 상공 중간권 중량파의 고유파동계수 및 운동량 플럭스 산출)

  • Chung, Jong-Kyun;Kim, Yong-Ha;Won, Young-In;Jee, Gun-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.327-338
    • /
    • 2007
  • We estimate the momentum fluxes of short-period gravity waves which are observed in the OI 557.7 nm nightglow emission with all-sky camera at Mt. Bohyun ($36.2^{\circ}\;N,\;128.9^{\circ}\;E$) in Korea. The intrinsic phase speed ($C_{int}$), the intrinsic period (${\tau}_{int}$), and vertical wavelength (${\lambda}_z$) are also deduced from the horizontal wavelength (${\lambda}_h$), observed period (${\tau}_{ob}$), propagation direction (${\phi}_{ob}$), observe phase speed (${\upsilon}_{ob}$) of the gravity wave on the all-sky images. The neutral winds to deduce intrinsic wave parameters are measured with Fabry-Perot interferometer on Shigaraki ($34.8^{\circ}\;N,\;13.1^{\circ}\;E$) in Japan. We selected 5-nights of observations during the period between July 2002 and December 2006 considering of the weather and instrument conditions in two observation sites. The mean values of intrinsic parameter of gravity waves are $({\tau}_{int})\;=\;12.9\;{\pm}\;6.1\;m/s,\;({\lambda}_z)\;=\;12.9\;{\pm}\;6.5,\;and\;(C_{int})\;=\;40.6\;{\pm}\;11.6\;min$. The mean value of calculated momentum fluxes for four nights besides of ${\lambda}_z\;<\;6\;km$ is $12.0\;{\pm}\;15.2\;m^2/s^2$. It is needed the long-term coherent observation to obtain typical values of momentum fluxes of the mesospheric gravity waves using all-sky camera and the neutral wind measurements.

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

Estimation of Deformation Modulus of Basaltic Rock Masses in Northeastern and Northwestern Jeju Island (제주도 북동부 및 북서부 현무암반의 변형계수 추정)

  • Yang, Soon-Bo;Boo, Sang-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.5-15
    • /
    • 2019
  • In this study, the in situ deformation moduli, which were measured by borehole loading tests at basaltic rock masses located in the northeastern onshore and offshore and the northwestern onshore of Jeju Island, were examined in relation to RQD and RMR. The measured deformation moduli were also compared with the estimated deformation moduli from conventional empirical formulas using RQD and RMR. In addition, the measured deformation moduli were analyzed with respect to both the velocity ratio ($V_P/V_S$) and dynamic Poisson's ratio, which were obtained from the elastic wave velocities measured by velocity logging tests. As results, with only RQD, it was inappropriate to evaluate the quality of the Jeju island basaltic rock masses, which are characterized by vesicular structures, to select a measurement method of in situ deformation moduli, and to estimate the deformation moduli. On the other hand, it was desirable to evaluate the quality of the Jeju Island basaltic rock masses, and to estimate the deformation moduli by using RMR. The conventional empirical formulas using RMR overestimated the deformation moduli of the Jeju Island basaltic rock masses. There was qualitative consistency in the relation between velocity ratio and deformation moduli. To estimate appropriately the deformation moduli of the Jeju Island basaltic rock masses, empirical formulas were proposed as the function of RMR and velocity ratio, respectively.

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

A Design of All-Digital QPSK Demodulator for High-Speed Wireless Transmission Systems (고속 무선 전송시스템을 위한 All-Digital QPSK 복조기의 설계)

  • 고성찬;정지원
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.83-91
    • /
    • 2003
  • High-speed QPSK demodulator has been in important design objective of any wireless communication systems, especially those offering broadband multimedia service. This paper describes all-digital QPSK demodulator for high-speed wireless communications, and its hardware structures are discussed. All-digital QPSK demodulator is mainly composed of symbol time circuit and carrier recovery circuit to estimate timing and phase-offsets. There are various schemes. Among them, we use Gardner algorithm and Decision-Directed carrier recovery algorithm which is most efficient scheme to warrant the fast acquisition and tacking to fabricate FPGA chip. The testing results of the implemented onto CPLD-EPF10K100GC 503-4 chip show demodulation speed is reached up to 2.6[Mbps]. If it is implemented a CPLD chip with speed grade 1, the demodulation speed can be faster by about 5 times. Actually in case of designing by ASIC, its speed my be faster than CPLD by 5 times. Therefore, it is possible to fabricate the all-digital QPSK demodulator chipset with speed of 50[Mbps].

  • PDF

An FPGA Design of High-Speed QPSK Demodulator (고속 무선 전송을 위한 QPSK 복조기 FPGA 설계)

  • 정지원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1248-1255
    • /
    • 2003
  • High-speed QPSK demodulator has been one important design objective of any wireless communication systems, especially those offering broadband multimedia service. This paper describes Zero-Crossing IF-level(ZCIF) QPSK demodulator for high-speed wireless communications, and its hardware structures are discussed. ZCIF QPSK demodulator is mainly composed of symbol time circuit and carrier recovery circuit to estimate timing and phase-offsets. There are various schemes. Among them, we use Gardner algorithm and Decision-Directed carrier recovery algorithm which is most efficient scheme to warrant the fast acquisition and tracking to fabricate FPGA chip. The testing results of the implemented onto CPLD-FLEX10K chip show demodulation speed is reached up to 2.6[Mbps]. Actually in case of designing by ASIC, its speed may be faster than CPLD by 5 times. Therefore, it is possible to fabricate the ZCIF QPSK demodulator with speed of 10 Mbps.