• Title/Summary/Keyword: S-(2-aminoethyl)-L-cysteine (AEC)

Search Result 3, Processing Time 0.02 seconds

Selection of 5-Methyltryptophan and S-(2-Aminoethyl)-L-Cysteine Resistant Microspore-Derived Rice Cell Lines Irradiated with Gamma Rays

  • Kim, Dong-Sub;Lee, In-Sok;Jang, Cheol-Seong;Hyun, Do-Yoon;Lee, Sang-Jae;Seo, Yong-Weon;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Microspore-derived cell lines resistant to 5-methyltryptophan (5MT, a tryptophan analog) or S-(2-aminoethyl)-L-cysteine (AEC, a Iysine analog) were selected in rice by in vitro mutagenesis. For selection of 5MT or AEC resistant cell lines, suspension-cultured cells were irradiated with gamma rays. Thirteen 5MT resistant cell lines were selected and they were able to grow stably at 2 times higher 5MT concentration. A feedback insensitive form of anthranilate synthesis, the pathway specific control enzyme for tryptophan synthesis, was detected from the 5MT resistant lines. Contents of the free amino acids in five resistant lines (MR12-1 to MR12-5) showed a 7.4 to 46.6 times greater level than that in the control culture. Tryptophan, phenylalanine, and tyrosine levels in the shikimate pathway were 28.1 and 22.5 times higher in MR12-3 and MR12 4, respectively, than that measured in the control cells. Four AEC resistant cell lines were isolated from cultures grown on medium containing 1 mM AEC, They were able to grow stably with 2 mM AEC, while sensitive calli were inhibited by 0.5 mM AEC. Aspartate kinase activities of the resistant lines were insensitive to the natural inhibitor, Iysine, and accumulated 2.2 to 12.9-fold higher levels of free Iysine than that of the control cells. Especially, the levels of aspartate, asparagine, and methionine in the aspartate pathway showed higher accumulation in the AEC resistant lines than that in the control cells.

Selection and Characterization of S-Aminoethyl-L-Cysteine Resistant Plants from Gamma-ray Irradiated Embryogenic Callus in Sweet potato

  • Lee In-Sok;Kim Dong-Sub;Hong Chang-Pyo;Kang Si-Yong;Song Hi-Sup;Lee Sang-Jae;Lim Yong-Pyo;Lee Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.233-238
    • /
    • 2003
  • Sweet potato cells derived from Yulmi were isolated from embryogenic callus and irradiated with 50 Gy dose. Resistant cells were selected on a MS medium containing 1.0 mM S-aminoethyl-L-cysteine (AEC). This level of AEC approximately inhibits non-selected wild type cells. The callus resistant to this analog of lysine was subcultured for 30 days in absence of AEC to proliferate. The three resistant calli (AR-1, AR-2 and AR-3) with better growth were divvied into 0.5~1mm diameter and placed on MS medium with 0, 0.4, 0.6, 0.8 and 1.0 mM AEC. There are considerable growth difference between control callus and AEC resistant callus on the AEC-medium. The selected calli were placed on the hormone-free medium for regeneration. Three plantlets, five plantlets and six plantlets were recovered from AR-1, AR-2 and AR-3 calli, respectively. Each two regenerants in AR-1, AR-2 and AR3 were randomly selected for RAPD and SDS PAGE analysis. RAPD polymorph isms between Yulmi and AEC resistant plant from irradiated calli were detected in several Wako primers. Also, it was identified that two AEC resistant plants had higher protein than the original variety Yulmi.

Molecular Cloning and Expression of dapA, the Gene for Dihydrodipicolinate Synthetase of Corynebacterium glutamicum (Dihydrodipicolinate Synthetase를 코딩하는 Corynebacterium glutamicum의 dapA 유전자의 클로닝 및 발현)

  • 오종원;한종권;이현환;현형환;이재흥;스테판정
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 1991
  • The dapA-complementing gene (L-2, 3-dihydrodipicolinate synthetase: DHDP synthetase, dapA) has been cloned by using a cosmid genomic bank of Corynebacterium glutamicum JS231 that is a lysine overproducer, AEC (s-(2-aminoethyl)-L-cysteine) resistant mutant. By enzymatic deletion analysis, the DNA region complementing the escherichia coli dapA host could be confined to 4.5kb SalI-generated DNA fragment. This DNA fragment was inserted into the C. glutamicum/E. coli shuttle vector pECCG117 to construct pDHDP5812. The specific activity of DHDP synthetase detected in C. glutamicum JS231/pDHDP5812 was increased about 10 fold above that of C. glutamicum JS231. The addition of leucine during growth did not repress the expressin of dapA, and the enzyme activity was not inhibited by lysine.

  • PDF