PCBs의 대기 중 농도는 고용량 PUF sampler를 이용하여 2000년부터 2002년까지 주 1회 수도권 인근지역인 경기도 안성에서 측정하였다. 본 논문은 비선형 회귀모델을 이용하여 대기 중 가스상 PCBs의 연간, 월간 사이클을 평가 하고자 한다. Clausius-Clepeyron 식을 이용한 가스상 PCBs의 기울기는 고분자로 갈수록 증가하는 경향이었다. 이는 고분자 PCBs는 저분자 PCBs에 비해 온도 의존성이 크다는 것을 의미한다. 다시 말해, 고분자 PCBs는 다른 지역에서 장거리 이송되어 오는 오염물질의 영향 보다는 지역적인 오염원(예, 토양, 수계 등)에 의해 영향을 크게 받고 있다는 것을 시사한다. Lorentzian 모델을 이용한 총 PCBs의 일별, 월별 회귀식의 결정계수($R^2$)는 각각 0.62(p<0.0001), 0.88(p<0.0001)로 나타나 유의한 결과를 보였다. 또한, 비선형 회귀식 모델을 활용하여 구한 가스상 PCBs의 일별, 월별 싸이클을 모사한 방정식도 매우 유의한 결과(p<0.0001)를 나타내었다.
롤 모델은 개인의 직업 혹은 경력선택에 영향을 주기도 한다고 알려져 있다. 창업을 선택함에 있어서 롤 모델의 긍정적 영향은 많은 연구를 통해 이미 밝혀진 바가 있다. 롤 모델로는 혈연으로 연결된 가족 구성원인 부모형제 및 친척뿐만 아니라 사회적 관계로 만난 지인을 롤 모델로 선정한다고 한다. 본 연구에서는 자기이외에 롤 모델이 없는 창업자들과 롤 모델이 있는 창업자들로 구분하였다. 그리고 롤 모델이 있는 창업자들과 롤 모델이 없는 창업자들 간에 개인속성, 기업가정신 요인들, 학습지향성의 차이를 검증하고자 하였다. 또, 부모형제 및 친척 롤 모델을 강한 유대의 롤 모델로 지인 롤 모델을 약한 유대의 롤 모델로 구분하였다. 강한 유대 롤 모델을 가진 창업자들과 약한 유대 롤 모델을 가진 창업자들 간에 개인속성, 혁신성, 진취성, 위험감수성, 학습지향성의 차이를 검증하고자 하였다. 이를 위해 요인분석, t-검증 및 로지스틱 회귀분석을 실시하였다. 본 연구를 통해 밝혀진 실증분석 결과는 다음과 같다. 첫째, 롤 모델이 없는 창업자들 중 여성의 비율이 높은 것으로 나타났다. 둘째, 약한 유대의 롤 모델을 가진 창업자들이 강한 유대의 롤 모델을 가진 창업자들에 비해 큰 규모의 창업기업을 운영한다는 것이 밝혀졌다. 셋째, 약한 유대의 롤 모델을 가진 창업자들이 강한 유대의 롤 모델을 가진 창업자들에 비해 학습지향성이 더 높은 것으로 나타났다. 넷째, 로지스틱 회귀분석을 통해 살펴본 결과 롤 모델의 유무에 대한 영향은 성별, 학습지향성, 위험감수성, 창업규모 순인 것으로 나타났다. 다섯째, 로지스틱 회귀분석 결과에서 롤 모델의 유형에 대한 영향은 학습지향성, 창업규모의 순인 것으로 나타났다.
인체 선형 모델 (이하 SMPL 모델)은 3 차원 사람 모델로, 3 차원 컴퓨터 그래픽 기술이 발전함에 따라 활용 범위가 확대될 수 있다. 다운샘플링 (Down-sampling)으로 여러 해상도의 SMPL 모델이 사용가능 하다면, 3 차원 컴퓨터 그래픽 기술 발전에 도움이 될 것이다. 3 차원 모델의 다운샘플링을 위한 많은 메쉬 단순화 (Mesh simplification) 기법이 존재한다. 하지만 기존의 기법만을 사용하면 다운 샘플링 한 모델의 자세 (Pose)를 변경했을 때 기대한 것과 다른 결과물이 만들어지는 문제가 발생한다. 본 논문에서는 가장 가까운 정점으로 SMPL 모델의 관절 회귀자 (Joint regressor) 값을 넘겨주어 문제를 해결하는 다운샘플링 (Down-sampling) 방법을 제시한다.
Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.1-8
/
2016
최근 강력 범죄 및 우발 범죄가 끊이지 않고 있으면서 사회적 불안감이 고조되고 있다. 이에 따라 방범용 카메라, CCTV (Closed Circuit Television)가 범죄 증거 확보와 치안을 위해 사용되고 있다. 그러나 CCTV는 주로 사후 처리 기능으로 사용하고 있으며 사전에 범죄를 예방하기는 힘들다. 본 연구에서는 CCTV로부터 수집된 보행자 데이터를 이용하여 객체의 행동을 분석하고 위험 행동 여부를 추정하기 위한 유연성 다중 회귀 모델을 제안한다. 유연성 다중 회귀 모델은 필터링, 상황분석, 예측 단계로 구성되어 있다. 먼저 보행자에 대한 환경과 상황에 대해 필터링한 후 상황분석에 대한 정보를 구축하고 관찰 객체에 이상 행동이 결정된다. 마지막으로 연관분석을 통해 객체의 행동이 예측되어 위협 상황을 통지한다. 이를 통해 다중 지역에서 객체의 행동을 추적하여 객체 행동의 위험여부를 알 수 있으며, 행동 예측을 통해 범죄 발생을 예측 가능하다.
본 논문에서는 Python 3의 Keras 모듈을 이용하여 특정 자동차에 대한 최적의 판매자권장소비자가격(MSRP)을 예측하는 시스템을 제안한다. 이 시스템은 2004년에 미국에서 시판된 428종류의 자동차에 대한 정보를 제조사, 차종, 생산지, 엔진 크기, 실린더 수, 시내 주행 시 연비, 고속도로 주행 시 연비, 마력, 차체 무게, 차체 길이의 독립변수를 사용하여 자체적으로 딥러닝한 회귀모델을 통해 특정 지표가 주어진 차량에 대해 종속변수인 판매자권장소비자가격을 예측한다. Optimizer를 adam으로, 학습률을 0.005으로 설정한 경우의 검증 MAE 값이 3842.98로 가장 낮게 산출되었고, 해당 모델의 결과는 예측값과 실제값의 오차율이 ±15% 정도 내외로 예측된 표본의 비율이 약 80.14%로 측정되었다. 위 모델은 향후 신차 가격 결정 및 중고차 시장에서 구매, 판매 결정을 돕는 등 특정 시장 내에서 다양한 자동차의 가치를 판단하기에 유용할 것으로 전망된다.
본고(本稿)는 Sims가 개발한 방법을 이용하여 우리나라와 같이 경제구조(經濟構造)가 급히 변하는 상황에서의 경제예측(經濟豫測)의 정확도(正確度)를 제고하고자 하는 시도의 일환이다. 본고(本稿)는 예측자의 사전신뢰(事前信賴)를 이용하여 계수의 값에 대하여 사전제약(事前制約)을 부과(賦課)하고 시간변동(時間變動)을 허용하는 변동계수(變動係數)벡타자귀(自歸)(TBVAR)모형(模型)의 추정방법뿐만 아니라 사전제약(事前制約)의 모수(母數)를 선택하는 방법과 오차(誤差)의 분산(分散)이 자기회귀(自己回歸)할 경우의 대처방법 등 예측(豫測)의 정확도(正確度)를 제고시키는 데 실제 사용되는 방법을 설명하고, 6변수모형(變數模型)을 이용하여 TBVAR 모델의 정확도(正確度)를 타(他) 모델과 비교한다. 정부건설(政府建設), 총통화(總通貨), 사채시장이자율(社債市場利子率), 민간건설(民間建設), 실질(實質)GNP 및 소비자(消費者) 물가지수(物價指數) 등 6변수(變數)에 대한 예측의 정확도를 "타일 U"값을 기준으로 비교할 때 TBVAR은 시간변동(時間變動)을 고려하지 않고 사전제약(事前制約)만 적용한 BVAR이나 사전제약(事前制約)도 적용하지 않은 VAR보다 대부분의 변수의 예측에 있어 더 정확하며 민간건설(民間建設)을 제외하고는 OLS보다 예측오차(豫測誤差)가 작게 나타난다.
기업의 성장성과 기업 주식가치를 매출, 매출원가, 영업이익율 등의 정형데이터와 경제, 경영관련 뉴스 등 비정형 데이터를 토대로 다양한 알고리즘을 활용해 분석하고, 그 결과의 유의성을 검증한다. 주성분회귀분석, 인공신경망, 나이브 베이지안 분류자, 긍/부정 사전분석 모델을 통해 분석된 결과를 검토하여 각 분석모델 별 성능을 확인하고, 기업 성장성 예측을 위해 활용 가능한 모델과 필요한 데이터를 제시한다.
국내 소규모 가구가 점차적으로 증가함에 따라 소규모 가구를 위한 주거공급 정책에 대한 중요성이 높아지고 있다. 이러한 중요성에 따라 정부에서는 소규모 가구를 위한 도시형 생활주택을 지속적으로 공급해오고 있다. 도시형 생활주택은 공동주택, 일반 업무시설과 동일하게 분양 및 임대 사업이므로 발주자는 프로젝트 기획단계에서 적정공사기간을 산정하는 것은 중요하다. 그러나, 선행연구에서는 대규모 건축물의 공사기간을 산정할 수 있는 모델이 존재하나 도시형 생활주택과 같은 소규모 건축물에 대한 적정 공사기간 산정 모델은 부재한 것으로 분석되었다. 따라서 본 연구의 목적은 기획단계에서 발주자가 적정 공사기간을 산정할 수 있는 다중 회귀분석 기반 도시형 생활주택의 공사기간 산정 모델을 개발 및 검증하는 것이다. 개발된 모델에 입력되는 독립변수는 연면적, 수도권, 지하층수, 지상층수, 주 건축물 수, 강원권의 총 6개이며, 개발된 모델의 수정된 결정계수(Ra2)는 0.547로 분석되었다. 개발된 모델의 성능은 RMSE의 경우 171.26일, MAPE의 경우 26.53%로 도출되었다. 본 연구를 통해 개발된 모델은 발주자에게 신뢰성 있는 공사기간 산정 결과를 제공할 수 있을 것으로 기대된다.
고령보행자를 포함한 교통약자는 신체적 능력이 저하되어 보행속도가 상대적으로 낮으며, 인지반응시간이 느린 특성을 가지고 있지만, 현재 교통약자를 위한 보행신호는 0.8m/s로 일률적으로 적용하고 있다. 문제점을 개선하기 위하여 스마트 횡단시스템이 개발되어 운영되고 있지만, 보행자별 적정 보행속도를 반영한 신호운영이 이루어지지 못하고 있다. 본 연구에서는 교통약자비율이 높은 지역에서 수집된 영상정보를 활용하여, 교통약자의 종류, 보행자의 수, 도로의 기하구조 등을 고려한 신경망모형과 다중회귀모형기반의 횡단속도 추정모델을 개발하였다. 이를 통해 개발된 모델을 스마트횡단시스템에 적용하여 실시간 교통약자에 따른 최적 보행신호 제공을 지원하고자 하였다. 경기도 파주시의 도시 교통 네트워크에서 수집된 실제 교통 상황 데이터 2,400개를 사용하였다. 모델의 성능은 상관계수, 평균 절대오차 등 7개의 선택된 지표를 통해 평가되었다. 다중선형회귀모델은 상관 계수가 0.652이고 MAE가 0.182였으며, 신경망모델은 상관계수가 0.823이고 MAE가 0.105로 나타나. 신경망모델이 더 높은 예측력을 보였다.
개인적 변인의 폭이 넓은 학습자 특성과 학업 방식의 독특성, 그리고 다양한 학습 환경이라는 특성을 가진 원격대학생의 학업지속성을 높이기 위하여 원격대학 학습자에 대해 행위수행의도를 중심으로 접근하는 ASE 모델을 포함하여 분석하는 것은 새로운 접근이라 할 것이다. 이에 본 연구에서는 원격대학 학습자의 학업스트레스와 학습태도, 사회적 영향과 학업적 자기효능감으로 구성된 ASE 모델요인과 학업지속의도 간 관계를 파악하고, 이들 요인이 원격대학 학습자의 학업지속의도에 미치는 영향을 파악하고자 하였다. 이를 위해 K 원격대학 2학년 학생을 대상으로 2018년 3월부터 6월까지 설문조사를 실시하여 최종 181명의 설문자료를 빈도분석, ${\chi}^2$검증, t-검증. F-검증, Pearson's correlation 분석 및 다중회귀분석을 이용하여 분석하였다. 학업지속의도에 영향을 미치는 요인에 관한 다중회귀분석 결과, 모델은 통계적으로 유의하였고(F=15.76, p<.001), 설명력은 29%였으며, 유의한 영향요인은 학업스트레스(${\beta}=-.16$, p=.016), 온라인 학습태도(${\beta}=.44$, p<.001)와 사회적 영향 요인 중 사회적 지지(${\beta}=.13$, p=.045)였다. 원격대학 학습자의 학업지속의도를 높이기 위해 학업스트레스를 낮추고, 온라인 학습태도를 높이며, 사회적 지지를 구축할 수 있는 정교한 맞춤형 프로그램의 개발 및 적용이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.