• 제목/요약/키워드: S, griseus

검색결과 56건 처리시간 0.018초

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.

Cholesterol Oxidase를 생산하는 방선균분리주 HSL-613의 동정 (Identification of the Streptomyces Strain HSL-613 Producing Cholesterol Oxidase)

  • 이홍수;이인애;최용경;이희구;이근철;박용하;오태광;최인성;정태화
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.373-381
    • /
    • 1994
  • An actinomycete strain, HSL-613 was isolated -from soil and identified by International Streptomyces Project (ISP) and chemotaxonomic methods. The spore chain of the strain HSL-613 appears in a spiral shape, and its spores are spherical shape with smooth surface. The cell wall contains LL-diaminopimelic acid (DAP). Menaquinone MK-9 (H$_{6}$, H$_{8}$) and iso- and anteiso-branched fatty acids were detected from whole cell extract. Sugars identified from whole cell extract include galactose, glucose, mannose and ribose, which are distinct from general sugar patterns of Streptomyces. Average G+C content in the chromosome is 59%. 5S rRNA of HSL-613 consists of 120 nucleotides as determined by comparing with that of a type strain Streptomyces griseus subsp. KCTC 9080. Through morphological, physiological, and chemical characterization, HSL-613 was identified and named as Streptomyces sp. HSL-613.

  • PDF

Streptomyces lividans에서 secE 유전자의 클로닝과 염기서열 결정

  • 김순옥;서주원
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.253-257
    • /
    • 1997
  • The secE gene of Streptomyces lividans TK24 was cloned by the polymerase chain reaction method with synthetic oligonucleo- tide primers designed on the basis of the nucleotide sequences of Streptomyces coelicolor secE-nusG-rplK operon. The deduced amino acid sequences of the SecE were highly homologous to those of other known SecE protein, that is 36.8%, 30.4%, 80.0%, and 80.9%, similarity to E. coli, Bacillus subtilis, Streptomyces griseus, Streptomyces virginiae SecE, respectively and exactly same with Streptomyces coelicolor SecE. It means that in spite of evolutionary differences, the genes for protein translocation machinery are highly conserved in eubacteria. The gene organization of secE-nusG-rplK is also similar to that of E. coli, B. subtilis, and streptomycetes.

  • PDF

Chitinase Inhibitor 생산 균주의 분리와 곤충탈피 억제효과 (Isolation of Chitinase Inhibitor-producing Microorganisms and Their Inhibitory Effect on Larval-Pupal Ecdysis)

  • 성수일;김근;성낙문;강현아
    • 한국잠사곤충학회지
    • /
    • 제34권2호
    • /
    • pp.1-5
    • /
    • 1992
  • 전국에서 수집한 토양시료로부터 약 200 여종의 미생물을 분리해내고 이들 균주의 배양 산물액을 대상으로 chitinase 억제능을 조사하였다. 그 결과 누에의 중장 소화관에서 추출한 chitinase crude enzyme과 시판의 정제된 chitinase에 대하여 공통으로 효소의 활성을 억제하는 2개의 균주 S-11과 S-25를 선발하는데 성공하였다. 이들 균주의 배양 산물액을 토사기의 누에에 주사한 결과 대부분의 누에가 용화탈피에 실패하였다.

  • PDF

Effects of Natural Selection, Mutagenesis, and Protoplast Formation and Cell Wall Regeneration on the Production of Aminoglycoside Antibiotics

  • Goo, Yang-Mo;Lim, Hyon-Joo;Lim, Seok-Ran;Kim, Kong-Hwan;Lim, Bun-Sam;Lee, Sae-Bae
    • Archives of Pharmacal Research
    • /
    • 제12권4호
    • /
    • pp.249-253
    • /
    • 1989
  • High producers or blocked mutants of aminoglycoside antibiotic-producing Streptomyces spp. were selected by application of an agar plug method and by culturing individual colonies in broth. The productivities of aminoglycoside antibiotic producing organisms were increased by selection of a high producer from colonies obtained by spreading spores of wild strain, or survived from treatment of a mutagen or from the colonies regenerated from protoplast-formation and cell-wall regenerations. Some mutagen treated colonies lost the ability to produce antibiotics (5-8%). Some A-factor negative and deostreptamine or streptidine negative mutants were obtained by N-methyl-N'-nitro-N-nitrosomethylguanidine (MNNG) treatment. Many of the survivors from the MNNG treatment lost the ability to produce antibiotics. Major colonies produced less amount of antibiotics ; only few survived colonies produced more antibiotics than the parent. Resistance of Streptomyces spp. against the antibiotics produced by itself was also markedly affected by mutagen treatment.

  • PDF

Beta-amyloid peptide degradation by aminopeptidase and its functional role in Alzheimer's disease pathogenesis

  • AhnJo, Sang-Mee
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Spring Conference
    • /
    • pp.77-90
    • /
    • 2006
  • Beta-amyloid peptide (A$\beta$) is a major component of senile plaques and its aggregation is considered to play a critical role in pathogenesis of Alzheimer's disease (AD). Aggregation of A$\beta$ could result from both increased synthesis and decreased degradation of A$\beta$. Our laboratory is interested in understanding the mechanism of A$\beta$ degradation in brain. Recently our laboratory identified a bacterial gene (SKAP) from Streptomyces sp KK565 whose protein product has an activity to cleave A$\beta$ and thus reduce the A$\beta$-induced neurotoxicity. The sequence analysis showed that this gene was closely related to aminopeptidase. Maldi-Tof analysis showed that the recombinant SKAP protein expressed in E. coli cleaves both A$\beta$ 40 and A$\beta$ 42 at the N-terminal of A$\beta$ while an aminopeptidase from Streptomyces griseus (SGAP) cleaves at the C-terminal. We also identified a mammalian homolog of SKAP and the recombinant mammalian protein expressed in Sf-9 insect cells showed a similar proteolytic activity to SGAP, cutting A$\beta$ at the C-terminus. I well discuss the detailed mechanism of the enzyme action and its functional implication in AD.

  • PDF

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

Isolation of Streptomyces sp. YU100 Producing Extracellular Phospholipase D

  • Lim, Si-Kyu;Choi, Jae-Woong;Lee, Eun-Tag;Khang, Yong-Ho;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.71-76
    • /
    • 2002
  • Soil samples were screened for actinomycete strains capable of producing phospholipase D, and a strain, Streptomyces sp. YU100, showing a high transphosphatidylation activity was isolated. This strain secreted phospholipase D in a culture broth after 12 h of cultivation, and its productivity continued to increase for 36 h of fermentation. In addition, its transphosphatidylation rate of phosphatidylcholine to phosphatidylserine was almost $68\%$ within 1 h. The morphological and chemotaxonomical characteristics showed that this strain could be classified as a number of the Streptomycetaceae family, particularly due to the spiral form of its spore chain consisting of 60-70 smooth spores $(0.75{\times}1.0{\mu}m$) on an aerial mycelium, FA-2c type of fatty acid profile in the cell wall, and LL-DAP component in the cell wall peptidoglycan. A phylogenetic analysis of the 16S rDNA provided a clue that the strain YU100 was actually a member of the genus Streptomyces, because the determined sequence exhibited a higher homology with Streptomyes sp. ASB27, S. peucetius JCM9920, and S. griseus ATCC10137. A dendrogram based on the 16S rDNA sequences also showed a phylogenetic relationship between the strain YU100 and these strains. However, the strain YU100 has not yet been assigned to a particular species, because of absence of any other classified species with a high matching score.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.