• Title/Summary/Keyword: S&P 500 Index Option

Search Result 4, Processing Time 0.02 seconds

The Information Content of Option Prices: Evidence from S&P 500 Index Options

  • Ren, Chenghan;Choi, Byungwook
    • Management Science and Financial Engineering
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2015
  • This study addresses the question as to whether the option prices have useful predictive information on the direction of stock markets by investigating a forecasting power of volatility curvatures and skewness premiums implicit in S&P 500 index option prices traded in Chicago Board Options Exchange. We begin by estimating implied volatility functions and risk neutral price densities every minute based on non-parametric method and then calculate volatility curvature and skewness premium using them. The rationale is that high volatility curvature or high skewness premium often leads to strong bullish sentiment among market participants. We found that the rate of return on the signal following trading strategy was significantly higher than that on the intraday buy-and-hold strategy, which indicates that the S&P500 index option prices have a strong forecasting power on the direction of stock index market. Another major finding is that the information contents of S&P 500 index option prices disappear within one minute, and so one minute-delayed signal following trading strategy would not lead to any excess return compared to a simple buy-and-hold strategy.

Modeling Implied Volatility Surfaces Using Two-dimensional Cubic Spline with Estimated Grid Points

  • Yang, Seung-Ho;Lee, Jae-wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2010
  • In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models

  • CHOI, SEUNGMOON
    • KDI Journal of Economic Policy
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2018
  • We estimate three continuous-time stochastic volatility models following the approach by Aït-Sahalia and Kimmel (2007) to compare the Korean and US stock markets. To do this, the Heston, GARCH, and CEV models are applied to the KOSPI 200 and S&P 500 Index. For the latent volatility variable, we generate and use the integrated volatility proxy using the implied volatility of short-dated at-the-money option prices. We conduct MLE in order to estimate the parameters of the stochastic volatility models. To do this we need the transition probability density function (TPDF), but the true TPDF is not available for any of the models in this paper. Therefore, the TPDFs are approximated using the irreducible method introduced in Aït-Sahalia (2008). Among three stochastic volatility models, the Heston model and the CEV model are found to be best for the Korean and US stock markets, respectively. There exist relatively strong leverage effects in both countries. Despite the fact that the long-run mean level of the integrated volatility proxy (IV) was not statistically significant in either market, the speeds of the mean reversion parameters are statistically significant and meaningful in both markets. The IV is found to return to its long-run mean value more rapidly in Korea than in the US. All parameters related to the volatility function of the IV are statistically significant. Although the volatility of the IV is more elastic in the US stock market, the volatility itself is greater in Korea than in the US over the range of the observed IV.