• Title/Summary/Keyword: Rx/Tx switching circuit

Search Result 4, Processing Time 0.015 seconds

A Study on the Rx/Tx Switch Module with integrated Low Pass Filter (LPF가 집적화된 Rx/Tx 스위치 모듈에 관한 연구)

  • Song Jae-Sung;Min Bok-Ki;Jeong Soon-Jong;Kim In-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.185-189
    • /
    • 2005
  • This paper focuses on the design for Rx/Tx switch module of GSM(global standard mobile) band, characterization of a miniature, low power and dual-band implementation of the front-end switch module with low-pass filer And the effort to make agreement between the simulated design and the measured data for these solutions takes the place through accumulated design and manufacturing data library. We present the design, modeling and measurement of switch module integrating GSM Rx/Tx switching circuit and LPF(low pass filter) on a LTCC(low temperature co-fired ceramic) substrate. For GSM application, insertion and return loss of the low pass filter designed was less than 0.3 dB which was less than 12.7 dB at 900 MHz. The LTCC switch module contained 10 embedded passives and 3 surface mount components integrated on 4.6$\times$4.8$\times$1.2 mm, 6-layer multi-layer integrated circuit. The insertion loss of switch module measured at 900 MHz was 11 dB. In both of the design approach yielded excellent agreement between measured and simulated results.

A study on the integration of Rf switch module using LTCC technology (LTCC 기술을 이용한 RF Switch Module의 집적화에 관한 연구)

  • Kim, Ji-Young;Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung;Suh, Young-Suk;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.710-713
    • /
    • 2004
  • The design, simulation, modeling and measurement of a low temperature co-fired ceramic (LTCC) RF switch module for GSM applications is presented in this paper. RF switch module is constructed using a Rx/Tx switching circuit and integrated low pass filter. The low pass filter function was designed to operate in th GSM band. Insertion and return loss of the low pass filter were designed less than 0.3 dB and better than 12.7 dB at 900 MHz. The RF switch module contained 10 embedded passives and 3 surface mount components integrated on $4.6{\times}4.8{\times}1.2$ nm, 6-layer multi-layer integrated circuit. The insertion loss of switch module was measured at 900 MHz was 11 dB.

  • PDF

Design and implementation of remote controlling wireless transmission unit using duplex-FSK (Duplex-FSK 원격제어 무선 전송부 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.629-635
    • /
    • 2009
  • The FSK duplex remote controlling wireless transmission units with a common local oscillator circuit for transmitter and receiver are designed and implemented in this paper. In the FSK full-duplex the channel frequency for Tx/Rx is allocated, a common switching oscillator circuit for Tx/Rx is designed in the FSK half-duplex scheme. Both of FSK units get functions of automatic channel detection for busy channels and channel configuration for an idle channel in order to reduce the RF channel interference and are designed as a remote controller with small-sized low power of 10mW and the 400MHz-colpitz type PLL configuration of 50kHz channel separation. The full-duplex Tx/Rx link frequency gets frequency difference of 42.8MHz, which is double of 21.4MHz IF frequency.

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.