• Title/Summary/Keyword: Rus

Search Result 56, Processing Time 0.03 seconds

Development of Laser-Based Resonant Ultrasound Spectroscopy(Laser-RUS) System for the Detection of Micro Crack in Materials (재료의 미세결함 검출을 위한 레이저 공명 초음파 분광(Laser-RUS)시스템 개발)

  • Kang, Young-June;Kim, Jin-Soo;Park, Seung-Kyu;Baik, Sung-Hoon;Choi, Nag-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Non-contacting, laser-based resonant ultrasound spectroscopy (L-RUS) was applied to characterize the microstructure of a material. L-RUS is widely used by virtue of its many features. Firstly, L-RUS can be used to measure mechanical damping which related to the microstructural variations (grain boundary, grain size, precipitation, defects, dislocations etc). Secondly, L-RUS technology can be applied to various areas, such as the noncontact and nondestructive quality test for precision components as well as noncontact and nondestructive materials characterization. In addition, L-RUS technology can measure the whole field resonant frequency at once. In this paper, we evaluated material characteristics such as resonant frequency, nonlinear propagation characteristic through the development of Laser-Based Resonant Ultrasound spectroscopy (Laser-RUS) System for the detection of Micro Crack in Materials.

Nondestructive Evaluation of the Flaw in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy (공명초음파분광법을 이용한 페롤의 비파괴결함평가)

  • 김성훈;백경윤;김영남;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.108-117
    • /
    • 2004
  • In this paper, a measuring NDT(nondestructive testing) system using RUS(Resonant Ultrasound Spectroscopy) was built for nondestructive evaluation of the flaw in a ceramic Ferrule. The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. The RUS system is the measuring which is to exite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and specimen which has some defects. RUS system is configured of spectrum analyzer, power amplifier, PZT sensor and support frame. For defect evaluation by the RUS, we performed to measure natural frequency of Ferrule, both acceptable and cracked. In the case of Ferrule, the resonant frequency of cracked-Ferrule existed to higher frequency band than acceptable-Ferrule.

The Evaluation on the frequency Characteristics of the Optical Glass Lens by Resonant Ultrasound Spectroscopy (RUS법에 의한 광학기기용 렌즈의 주파수 특성평가)

  • Yang, In-Young;Kim, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2005
  • The optical glass lens is required high dimensional precision such as the lack of defect. In this paper, we examined the detectable defect by using the resonant ultrasound spectroscopy(RUS). The RUS is the measurement system which is to excite the specimen and to inspect the differences of resonant frequency pattern between acceptable specimen and specimen which has some defects. In this paper, for nondestructive evaluation by using RUS, we measured the resonant frequency of each specimen which is spherical and aspherical glass lens. With the results, we knew the polishing processing degree of spherical glass lens by the measured resonant frequency and could evaluate the characteristic of aspherical glass lens about some flaws.

Nondestructive Test of Optical Connector by Resonant Ultrasound Spectroscopy Method (공명초음파분광법에 의한 광컨넥터용 결합소자의 비파괴검사)

  • Kim, Sung-Hoon;Lee, Kil-Sung;Kim, Dong-Sik;Kim, Young-Nam;Jeong, Sang-Hwa;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a ceramic ferrule and a ball lens. The ceramic ferrules are cylinderical shape with $\phi$ 2.56mm diameter and l0mm in length. Crack lengths of these ferrules are 10.40$\mu$m, 21.18$\mu$m and 32.35$\mu$m. The spherical ball lens was made of BK-7 glass, one's diameter in 2mm and 5mm. RUS system is consisted of spectrum analyzer, power amplifier, PZT sensor and support frame. The principle of RUS is that the mechanical resonant frequency of the materials depends on density and the coefficient of elasticity. Rus system is based on that given resonant frequency of the materials can be represented by the function of density and the coefficient of elasticity, and it is applied to excite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and defective ones. Defect evaluation by RUS are performed to investigate the natural frequency measure of ferrule and ball lens.