• Title/Summary/Keyword: Rupture strain

Search Result 153, Processing Time 0.023 seconds

High temperature rupture lifetime of 304 stainless steel under multiaxial stress states (다축응력상태에서의 304 스테인리스강의 고온 파괴수명에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.595-602
    • /
    • 1998
  • Specimens of 304 stainless steel were tested to failure at elevated temperatures under multiaxial stress states, uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times are compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the principal facet stress gives the best correlation for the material investigated, and this parameter can predict creep life data under multiaxial stress states with rupture data obtained with specimens under uniaxial stresses. The results also suggest that grain boundary cavitation, coupled with localized deformation processes such as grain boudary sliding, controls the lifetimes of the specimens.

Creep Behaviour of Solution Treated Alpha Titanium Alloy for Automotive Parts (자동차부품 소재개발을 위한 알파 티타늄 합금의 용체화 처리후 정적 크리프 거동)

  • Hwang Kyungchoong;Yoon Jongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.153-158
    • /
    • 2005
  • Titanium alloy has widely been used as material for automotive parts because it has high specific strength. It is also light and harmless to human body. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with low different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the fallowing results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 7.5. And for the last, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture.

Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine (줄기 엽채소의 기계적 파지시 리올로지 특성)

  • Jun, Hyeon-Jong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

Force-Deformation Characteristics of the Fruit Flesh (과실(果實)의 힘-변형(變形) 특성(特性))

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.2
    • /
    • pp.156-170
    • /
    • 1992
  • The force-deformation relationship gives the basic physical properties of the fruits such as the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point. These informations are very important to study the stress-strain relationships of the fruits. This study was conducted to analyze those physical properties according to the sampling position of the fruits, and to determine the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point of the fruits for two different storage conditions(low temperature and normal temperature) and the storage period, and to investigate the effect of loading rate on those physical properties, the hysteresis on the loading-unloading condition and the degree of elasticity of the fruits. The results of the study were as follows : 1. The physical properties(BS, US, BD, and RD) of the test specimen selected from the different sampling positions were quite different. The values of the physical properties were shown smallest ones at the cheek of the fruits, and the statistical test results of the physical properties between the cheek from the other two positions of the fruits showed that there were significant difference at the 1 % level between them. 2. The effect of loading rate on the physical properties of the fruits was relatively large, all the considered physical propertis of the fruits increased with the loading rate, but the hysteresis loss decreased with it. 3. The physical properties of the fruits according to the storage conditions and period showed different, and the bioyield deformation and the rupture deformation of the fruits increased with the storage period, but the bioyield strength and the ultimate strength of the fruits decreased with it. The effect of the storage conditions on the those physical properties showed that the normal temperature storage condition was a little higher than the low temperature storage condition. 4. As a whole, it was shown that the bioyield strength and the ultimate strength of the pear decreased a little faster than those of the apple, and the bioyield deformation and rupture deformation of the pear increased a little faster than those of apple at the two storage conditions.

  • PDF

Cyclic Creep Strain of Cu Pure Metal (CU 순금속의 사이클릭 크리프 변형)

  • Jeong, S.U.;Lee, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.194-199
    • /
    • 2000
  • The creep rate is affected by the temperature and in fact. if the temperature above $T_M/2(T_M:melting\;point)$. The aim of the present investigation is to study the relationship of static creep and cyclic creep behavior of pure copper and the formulation of these phenomena with the special attention to the instantaneous strain. strain rate from time and number of cycles have the same inclination Steady state creep rate depend upon maximum stress and can be expressed as linear function according to Power law creep equations Creep rupture time has relation with creep rate. and it make a group represented as the same direct line regardless of max stress, stress ratio and the temperature. Initial strain effect on continuous creep deformation. and have guantitative relationship between elastic and Plastic strain. LMP have similar tendency than OSDP and MHP according to temperature

  • PDF

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

Life Prediction and AE Evaluation of Pure or Cyclic Creep for Power Plant Materials ; Pure Creep and AE Evaluation (전력용 강재의 정적.동적 크리프의 상관성과 예측 및 AE평가(1); 정적 크리프와 AE평가)

  • 오세규;장홍근;송정근
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.76-84
    • /
    • 1998
  • In this 1st report, the relationship between pure creep properties and initial strain was studied and also its acoustic emission test was performed during creep test at 500, 600 and $700^{\circ}C$. And the applicability of the acoustic emission technique was investigated to analyze the quantitive relationship between all the pure properties (creep strength, creep repture time or creep life, steady state creep rate, total creep rate, creep strain, total creep strain, etc.) and the initial strains as well as to analyze AE properties during the pure creep loading condition.

  • PDF

The Mechanical Properties of High-Strength Concrete-The Effect of Strain Rate and the Tensile Strength- (고강도콘크리트의 재료역학적 특성 연구-변형도율과 인장강도를 중심으로-)

  • 김진근;박찬규;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.111-118
    • /
    • 1992
  • The mechanical behaviors related to the strain rate effect and the tensile strength of high-strength concrete were investigated in this study. For this purpose, concrete cylinder specimens with 4 different compressive strengths from 232kg/$\textrm{cm}^2$ to 1113kgf/$\textrm{cm}^2$ were tested and analysed on the mechanical properties(stress-strain relationship, compressive, modulus of elasticity, strain at peak compressive stress). From this experimental and analytical study, it seems that the current prediction model(ACI) for modulus of rupture need to be refined. Therefore, more refined equations for evaluation tensile strength of concrete are proposed.

  • PDF

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온 예변형에 의한 크리프 거동)

  • 박인덕;남기우;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strained specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steen which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF