• Title/Summary/Keyword: Rupture disk

Search Result 21, Processing Time 0.027 seconds

Development of a Rupture Disk for Pyrostarters (파이로스타터용 럽쳐디스크 개발)

  • Park, Ho-Jun;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.219-222
    • /
    • 2009
  • Pyrostarters play a role as a turbopump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start. A rupture disk in pyrostarters, which is usually installed behind a nozzle throat, not only isolates the charged solid propellants from the external environment but also improves the ignitability of the solid propellants by increasing a chamber pressure at the beginning of combustion. Experimental tests have been performed to study the effects of rupture disk thickness, depth and shape of scores, and pressure build-up rates on burst pressures and burst diameters. The experimental results show that the developed rupture disk fulfills the performance requirements expected in a real operational condition.

  • PDF

A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor (회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구)

  • Lee, Hyung-Sub;Yun, Hee-Chang
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study is to suggest the rupture disk design(size) and application at the two phase(gas-liquid) flow by runaway reaction at batch reactor. The definition of runaway reaction is abnormally exothermic reaction by the uncontrolled cooling water or deviated operating condition. As a result, the temperature of reactor is rapidly increasing. The causes of runaway reaction are either self-heating reaction or sleeper reaction. General methods of rupture disk size or safety valve are not suitable in the runaway reaction, because of temperature and pressure increasing rapidly in the reactor and the phases of relieving fluid is 2-phase flow. This study case of the reactor incident, the depressurization system such as safety valve and vent installed, however, the system did not relieved the pressure of reactor suitably. The orifice size of the safety valve were designed too small because the size had not been considered the phenomena and character of reaction. The batch reactor design should be considered by referring to the possibility of runaway reaction proposed in this study and the size of rupture disk design method considering 2-phase flow.

New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment

  • Geon Woo Jeon;Sung Woo Kim;Dong Jin Kim;Chang Yeol Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4481-4490
    • /
    • 2022
  • In this study, a new rupture disk corrosion test (RDCT) method was developed for real-time detection of stress corrosion cracking (SCC) initiation of Alloy 600 in a primary water environment of pressurized water reactors. In the RDCT method, one side of a disk specimen was exposed to a simulated primary water at high temperature and pressure while the other side was maintained at ambient pressure, inducing a dome-shaped deformation and tensile stress on the specimen. When SCC occurs in the primary water environment, it leads to the specimen rupture or water leakage through the specimen, which can be detected in real-time using a pressure gauge. The tensile stress applied to the disk specimen was calculated using a finite element analysis. The tensile stress was calculated to increase as the specimen thickness decreased. The SCC initiation time of the specimen was evaluated by the RDCT method, from which result it was found that the crack initiation time decreased with the decrease of specimen thickness owing to the increase of applied stress. After the SCC initiation test, many cracks were observed on the specimen surface in an intergranular fracture mode, which is a typical characteristic of SCC in the primary water environment.

Self Ignition Phenomena of High Pressure Hydrogen Released into Tube with Diaphragm Rupture Conditions (튜브 내 누출되는 고압수소의 격막파열조건에 따른 자발점화 현상)

  • Lim, Han Seuk;Lee, Sang Yoon;Lee, Hyoung Jin;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.215-218
    • /
    • 2014
  • High combustion efficiency of hydrogen could make it an ideal source of green energy in the future. At this time, high pressure vessel is the most reasonable method of storing hydrogen. However, such a high pressurized vessel could pose a critical threat if ruptured. For this reason, it is important to understand the mechanism of hydrogen's self-ignition when a high-pressure hydrogen released into air. This paper presents several visualization images as experimental results using high-speed camera. From the visualization images, the ignition is initiated near rupture disk immediately after failure of disk. And the initial ignition and flame is stronger as a rupture pressure increases. However, this ignition region do not affect the general self-ignition mechanism when a high-pressure hydrogen is released into air through tue after failure of disk.

  • PDF

Rupture Prediction of the Rupture Disk Using Elasto-Plastic Analysis (탄소성해석을 이용한 파열판의 파열예측)

  • Han, Houk-Seop;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Rupture disks are a kind of safety device in high pressure equipment and they are used to control rupture pressure in the solid rocket motor. In this paper, a series of rupture experiments was performed using rupture disks made of AISI 316L and rupture pressure of rupture disks was calculated through various assumptions in relation between elasto-plastic material properties and true stress-strain curve. Experiment and FEA indicated rupture pressure is determined by size of rupture disks. As a result of elasto-plastic analysis, only multi-linear stress-strain curve was able to calculate meaningful estimations. Experimental results also showed rupture location are decided by the size of rupture disks. Experimental and FEA results will be applied to control rupture pressure of disks.

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment (고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석)

  • Tae-Young Kim;Sung-Woo Kim;Dong-Jin Kim;Sang-Tae Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

A Parametric Study on Rupture Disc with Radial Slit of Pulse Separation Device (원주방향 슬릿을 가진 파열판의 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.261-264
    • /
    • 2010
  • Dual Pulse Rocket Motor is a solid rocket motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis of rupture disc was conducted by the finite element method. The effect of the slit geometry of rupture disc with radial slit was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.

  • PDF

A Parametric Sturdy on Double Slit Type Rupture Disc of Pulse Separation Device (펄스분리장치의 이중 슬릿형 파열판 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Koo, Song-Hoe;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.105-112
    • /
    • 2010
  • Dual Pulse Rocket Motor is a solid rocket motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis of rupture disc was conducted by finite element method. The effect of the slit geometry of a rupture disc was analyzed for rupture time and shape by the parametric study. The results can be used to control the rupture pressure by the change the slit geometry of a rupture disc.

  • PDF

A Study on the Improvement of Preventive Measures for Improving the Safety of Chemical Reactor (화학반응기의 안전성 향상을 위한 예방조치 개선에 관한 연구)

  • Byun, Yoon Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.32-38
    • /
    • 2020
  • Based on the cases of fire and explosion accident in the chemical reactor, thr problems of preventive measures installed in the chemical reactor were analyzed. The chemical reactors produce a variety of chemicals and install rupture disk to relieve the pressure that rises sharply in the event of a runaway reaction. In order to maintain the function of the rupture disk, the emissions was allowed to be discharged into the atmosphere, resulting in fire and explosion accidents. As a way to improve this, safety instrumented system based on the safety integrity level(SIL3) was applied as a preventive measures for chemical reactor. Two emergency shur-off valves are installed in series on pipe dropping raw materials for chemical reactor so that the supply of raw materials can be cut off even if only one of the two emergency shut-off valves is operated during the runaway reaction. The automatic on/off valve is installed in parallel in the supply pipe of the reaction inhibitor so that the reaction inhibitor can be injected even if only one valve is opened at the time of the runaway reaction.