• 제목/요약/키워드: Rupture Damage

검색결과 184건 처리시간 0.025초

BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책 (Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant)

  • 우인성;이중희;이인복;천영우;박희철;황성민;김태옥
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.22-28
    • /
    • 2012
  • BPA 공장의 메탄올 분리공정에서 HAZOP 평가를 실시하고, 사고 시나리오로부터 화재 및 폭발 사고의 피해범위를 예측하였다. 그 결과, 화재사고의 피해범위는 50 mm 직경의 안전밸브 토출배관 파열에 의한 제트화재에서는 20 m이었고, 설비가 전파되어 플래쉬화재가 발생되는 경우에는 267 m이었다. 또한 개방공간 증기운 폭발사고의 피해범위는 토출배관 파열에서는 22 m이었고, 설비 전파인 경우에는 542 m이었다. 그리고 최악의 누출 시나리오에 대한 안전대책으로는 메탄올 분리컬럼 내부의 이상압력 상승을 감지할 수 있는 압력계를 2 out of 3 voting으로 설비 상부에 설치하여 주공급라인 상에 설치된 컨트롤밸브와 긴급차단밸브를 동시에 차단할 수 있도록 하여야 한다.

고온 수명평가를 위한 수정 크립-피로 손상모델의 걔발 (Development of Modified Creep-Fatigue Damage Model for High Temperature Life Prediction)

  • 박종주;석창성;김영진
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3424-3432
    • /
    • 1996
  • For mechanical system operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to develop a modified creep-fatigue damage model which separately analyzes the pure creep damage for hold time and the creep-fatigue interaction damage during startup and shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a service of high temperature low cycle fatigue tests were performed. The test specimens were made from inconel-718 superalloy and the test parameters were wave shape and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was observed.

Structural assessment of reactor pressure vessel under multi-layered corium formation conditions

  • Kim, Tae Hyun;Kim, Seung Hyun;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.351-361
    • /
    • 2015
  • External reactor vessel cooling (ERVC) for in-vessel retention (IVR) has been considered one of the most useful strategies to mitigate severe accidents. However, reliability of this common idea is weakened because many studies were focused on critical heat flux whereas there were diverse uncertainties in structural behaviors as well as thermal-hydraulic phenomena. In the present study, several key factors related to molten corium behaviors and thermal characteristics were examined under multi-layered corium formation conditions. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative reactor pressure vessel (RPV) to figure out the possibility of high temperature induced failures. From the sensitivity analyses, it was proven that the reactor cavity should be flooded up to the top of the metal layer at least for successful accomplishment of the IVR-ERVC strategy. The thermal flux due to corium formation and the relocation time were also identified as crucial parameters. Moreover, three-layered corium formation conditions led to higher maximum von Mises stress values and consequently shorter creep rupture times as well as higher damage factors of the RPV than those obtained from two-layered conditions.

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions

  • Kang, Sang Hee;Lee, Sang Won;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.676-682
    • /
    • 2019
  • After the Fukushima Daiichi accident, there has been an increasing preference for passive safety features in the nuclear power industry. Some passive safety systems require limited active components to trigger subsequent passive operation. Under very serious accident conditions, passive safety features could be rendered inoperable or damaged. This study evaluates (i) the performance and effectiveness of the passive safety features of iPOWER (innovative Power Reactor), and (ii) whether a severe accident condition could be reached if the passive safety systems are damaged, namely the case of heat exchanger tube rupture. Analysis results show that the reactor coolant system remains in the hot shutdown condition without operator actions or electricity for over 72 h when the passive auxiliary feedwater systems (PAFSs) are operable without damage. However, heat exchanger tube rupture in the PAFS leads to core damage after about 18 h. Such results demonstrate that, to enhance the safety of iPOWER, maintaining the integrity of the PAFS is critical, and therefore additional protections for PAFS are necessary. To improve the reliability of iPOWER, additional battery sets are necessary for the passive safety systems using limited active components for accident mitigation under such extreme circumstances.

혈액모사유체의 미세협착 주변 맥동유동 시뮬레이션 (Numerical Simulation of Pulsatile Flows around Micro-Stenosis for Blood Analog Fluids)

  • 송재민;홍현지;하이경;염은섭
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.10-16
    • /
    • 2019
  • Considering the role of viscosity in the hemorheology, the characteristics of non-Newtonian fluid are important in the pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, contributes to block blood flows to downstream tissue and lead to plaque rupture. Therefore, systematic analysis of blood flow around stenosed vessels is crucial. In this study, non-Newtonian behaviors of blood analog fluids around the micro-stenosis with 60 % severity in diameter of $500{\mu}m$ was examined by using CFX under the pulsatile flow conditions with the period of 10 s. Viscosity information of two non-Newtonian fluids were obtained by fitting the value of normal blood and highly viscous blood. As the Newtonian fluid, the water at room temperature was used. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In addition, high viscous solution gives rise to increases the variation in the WSS around the micro-stenosis. Highly oscillating WSS enhance increasing tendency of plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.

배관체계 자율형 사고 대응 알고리즘에 대한 실험적 고찰 (An Experimental Examination on Autonomous Recovery Algorithm of Piping System)

  • 양대원;정병창;김성록;이채민;신윤호
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.8-14
    • /
    • 2023
  • In various industrial sites, piping systems play an essential role in stable fluid supply and pressure maintenance. However, these systems are constantly exposed to risks of earthquakes, explosions, fires, and leaks, which can result in casualties or serious economic losses. With rapid advancements in the industry, different-sized piping systems have been launched; however, there are not enough maintenance personnel for troubleshooting and responding to situations where damages occur to piping systems. This increases the need for introducing autonomous damage management systems. In this study, a lab-based piping system was designed and manufactured by referring to the piping system of a naval ship to analyze the effectiveness of autonomous damage management systems. By using this testbed, a representative algorithm, the hydraulic resistance control algorithm, was realized and examinedIn addition, the difference between the averaged pressure and normalized pressure was introduced to improve the performance of the existing algorithm, which faces some limitations with regard to sensor noise and back pressure from the rupture-simulated pipeline part.

酸素의 存在下와 無酸素下에서의 水溶液 및 固體 Glycylglycylglycine의 放射線分解 (Radiolysis of Oxygenated and Deoxygenated Glycylglycylglycine in Aqueous Solution and in the Solid State)

  • Kang, Man-Sik
    • 한국동물학회지
    • /
    • 제13권3호
    • /
    • pp.75-84
    • /
    • 1970
  • 蛋白質의 放射線分解의 기작을 밝히는 연구의 일환으로, 특히 peptide 結合의 분해의 기작을 구명하기 위하여 Glycylglycylglycine의 水溶液과 固體를 酸素의 존재하에서와 無酸素하에서 r 線을 조사하여 分解生成物을 여지크로마토그라프로 분리하였고, carbonyl 化合物과 amide를 각각 分光光度法과 微凉摘定法으로 정량하였으나 放射線障害를 평가하기 위하여 赤外線 spectrum과 紫外線 spectrum을 얻어 검토하였다. 水溶液과 固體에 있어서의 peptide 結合의 분해기작은 근본적인 차이가 있는 것으로 여겨지며, 전자에서는 월등하게 분해가 많이 일어난데 반해서 후자에서는 무시할 정도에 지나지 않았다. 한편, 水溶液의 경우 酸素의 유무에 따라 현저한 영향은 보이지 않았으나 無酸素하에서는 遊離基의 再結合이 일어나는 점이 특기할만 하였다. 水溶液에 있어서의 peptide 結合의 분해기구는 Garrison 一派가 주장한 기작에 의해서 일어나는 것이 분명하여 脫水素反應에 뒤이어 加水分解反應에 의해서 amide 와 carbonyl 이 생성되는 것으로 보이며, 固體의 경우도 $\\alpha$-炭素의 부위가 방사선의 공격을 가장 많이 받는 것으로 추정되나 그 정도는 미미한 것에 지나지 않는 것으로 생각되었다.

  • PDF

배관 침부식 손상 연속모사 장비 개발 및 실증 (Development and demonstration of an erosion-corrosion damage simulation apparatus)

  • 남원창;류경하;김재형
    • Corrosion Science and Technology
    • /
    • 제12권4호
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

보강용 지오신세틱스의 가속 인장 크리프 시험방법 (Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement)

  • 구현진;조항원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF