• Title/Summary/Keyword: Rupture Damage

Search Result 184, Processing Time 0.028 seconds

Structural damage distribution induced by Wenchuan Earthquake on 12th May, 2008

  • Jia, Junfeng;Song, Nianhua;Xu, Zigang;He, Zizhao;Bai, Yulei
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Based on the reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, China, structural damage characteristics and the spatial distribution of structural damage are investigated, and the possible reasons for the extraordinary features are discussed with consideration of the influence of urban historical evolution and spatial variation of earthquake motions. Firstly, the urban plan and typical characteristics of structural seismic damage are briefly presented and summarized. Spatial distribution of structural damage is then comparatively analyzed by classifying all surveyed buildings in accordance with different construction age, considering the influence of seismic design code on urban buildings. Finally, the influences of evolution of seismic design code, topographic condition, local site and distance from fault rupture on spatial distribution of structural damage are comprehensively discussed. It is concluded that spatial variation of earthquake motions, resulting from topography, local site effect and fault rupture, are very important factor leading to the extraordinary spatial distribution of building damage except the evolution of seismic design codes. It is necessary that the spatial distribution of earthquake motions should be considered in seismic design of structures located in complicated topography area and near active faults.

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF

A Study on Estimation of Overpressure Damage Caused by Rupture of Butane Can (volume : 34 g) (부탄 캔(용량 : 34 g)파열로 인한 과압의 피해예측에 관한 연구)

  • Leem Sa Hwan;Choi Ic Whoan;Lim Dong Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.8-15
    • /
    • 2005
  • With the introduction of 40 hour working week system, more households enjoy picnics on weekends. More gas accidents take place on Saturdays and on Sundays than any other days of week. As of October, 2004 casualties resulted from butane can accidents increased 1.5 times compared to the same period of the previous year. In this study, the influence of explosion over-pressure caused by the rupture of butane can thrown away after use was calculated by using the Hopkinson's Scaling Law and the accident damage was estimated by applying the influence on the adjacent structures and people into the Probit model. As a result of the damage estimation conducted by using the Probit model, both the damage possibility of explosion over-pressure to structures 50 meters away and that of over-pressure to people 10 meters away showed nothing. The explosion efficiency used was 100 percent. As a result of this, the actual damage influenced by the rupture of butane can would be lower than the value calculated in this study and expected to be safer.

  • PDF

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel

  • Aslam, Muhammad Junaid;Gur, Cemil Hakan
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.255-263
    • /
    • 2021
  • P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.

Reconstruction of Chronic Achilles Tendon Rupture Using Interposed Scar Tissue (A Report of Two Cases) (진구성 아킬레스건 파열에 대한 파열 단 사이의 반흔 조직을 이용한 재건술 (2예 보고))

  • Cho, Hyun-Jong;Yeo, Je-Hyoung;Lee, Keun-Bae
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.4
    • /
    • pp.316-320
    • /
    • 2013
  • It has been reported that the gap between the tendon stumps in chronic Achilles tendon rupture is filled with interposed scar tissue. If it was available to use the interposed scar tissue for reconstruction or augmentation of Achilles rupture, possible damage of normal tissues could be avoided. Our results show that direct repair method using interposed scar tissue for chronic Achilles tendon rupture can successfully relieve pain and restore function of the ruptured Achilles tendon in carefully selected patients.

Extensor Pollicis Longus Tendon Rupture Following Local Steroid Injection (국소 스테로이드 주사 후에 발생한 장무지신건 파열)

  • Choi, Yun Seok;Kim, Tae Hyung;Lim, Jin Soo;Jun, Young Joon
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.120-123
    • /
    • 2006
  • Spontaneous extensor pollicis longus tendon rupture is commonly caused by attrition of the tendon from trauma or inflammatory processes. We experienced a patient with extensor pollicis longus tendon rupture after steroid injection, in which the rupture may have been caused by the effects of steroid itself as well as direct damage from the needle. A 51-year-old woman complained of inability to extend her right thumb at the first metacarpophalangal & interphalangeal joint level. The patient had a history of local steroid injection into the dorsal & radial side of wrist on two occations, and had no history of trauma or rheumatologic disease. After a physical examination of the patient, we decided to explore the wrist. The patient agreed with operation. Intraoperatively, an incision was made into the wrist and the proximal and distal ends of the ruptured extensor pollicis longus tendon were identified. The defect between the proximal and the distal end was measured to approach 8cm, and a palmaris longus tendon graft was performed. After three months of rehabilitation, the first metacarpophalangal & interphalangeal joint recovered the normal range of motion. Steroid injection has been widely used in various musculoskeletal disorders such as rheumatoid arthritis and osteoarthritis. However, inadvertent steroid injection into the extra or intra articular spaces may lead to tendon rupture. Steroids reduce tensile strength by decreasing tenocyte activity and collagen synthesis. Also, the physical effect of direct needle-stick injury into the mesotenon and blood vessels around the tendon may cause damage. In addition, hematoma and edema may increase pressure around the tendon and compromise blood supply, leading to tendon degeneration and subsequent rupture. When injecting steroid into an articular area, all physicians should have a complete understanding of the surrounding anatomy and always keep in mind the hazards of such procedures.

Analysis of the Pressure Behavior with the Partial Rupture in Closed Vessel During Gaseous Explosion (밀폐공간에서 가스폭발에 의한 개구발생 후의 압력변화에 대한 해석)

  • 윤재건;조한창;신현동
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.40-47
    • /
    • 1999
  • A numerical study on gaseous explosion was carried out to predict the transient pressure behavior with the partial rupture in confined vessels. Equations, assumptions and solutions for central ignition of premixed gases in closed spherical vessels are proposed with various equivalence ratios of gas fuel, as $CH_4$ and $C_3H_8$, vent areas and vent opening pressures. Given vent opening pressure in a vessel, the magnitude of second peak pressure results from the vent areas and burning velocity, varied by equivalence ratio of gas fuel. In a living room of an apartment, the higher second peak pressure than the vent pressure is not appeared due to its large window areas. As vent opening pressure is higher, the larger damage by gaseous explosion is expected and the larger vent area is necessary for relieving the damage. In the same concentration, the gaseous explosion by propane rather than methane shows the larger damage due to its higher adiabatic flame temperature and equivalence ratio.

  • PDF

A Study on Damage Evaluation Austenitic Stainless Steel Tube Material (오스테나이트계 내식강 튜브 소재의 손상진단에 관한 연구)

  • Jo, Jong-Chun;Kim, Yeong-Seok;Kim, Hak-Min;Jeong, Hyeong-Jo
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.43-52
    • /
    • 1989
  • Material damage of Unifiner Change Heater: Tube used for nearly 20 years was evaluated and Mechanical tests such as tensile tests and creep-rupture tests were conducted to predict the residual life. After the investigation, any major damage or degradation was not found except the welded zone. Microstructural observation showed that most of delta-ferrite was transformed. to sigma-phase and consequently, the ductility was very much reduced. A KLA(Knife-Line Attack) crack with 60mm in length and 2.8mm in depth was found just near the welded zone, which is believed to be caused by intergranular corrosion. Creep-rupture tests, which are very essential to predict the residual life, showed that both used base and weld metals have similar results with the reference data.

  • PDF

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.