• Title/Summary/Keyword: Rupture Behavior

Search Result 210, Processing Time 0.027 seconds

Mechanical Behavior of Fruits under Compression Loading (과실의 압축특성에 관한 연구)

  • Hong J. H.;Kim C. S.;Kim J. Y.;Kim J. H.;Myung B. S.;Chung J. H.;Park J. W.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.280-284
    • /
    • 2005
  • Front the production on the farm to the consumer, agricultural products are subject to various physical treatments involving mechanical techniques and devices. It is essential to understand the physical laws governing the response of these biological materials so that the machines, processes, and handling operations can be designed fur maximum efficiency and the highest quality of the end products. A compression test system was developed to test the physical properties of fruits including apple, pear, and peach which may lead to a better understanding of the physical laws. The test system consisted of a digital storage oscilloscope and simple mechanism which can apply quasi-static compression to fresh fruits. Rupture force, energy, and deformation were measured at the five levels of compression speed from 1.25 to 62.5 mm/min for each internal and external tissues. Rupture forces for apple and pear were in the range of 42.2 to 46.2 N and 38.8 to 41.2 N for external and infernal tissues, respectively. Rupture forces fir peach external tissues were in the range of 48.2 to 54.0 N.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

Tensile Characteristics and Behavior of Blood Vessels from Human Brain in Uniaxial Tensile Test

  • Suh, Chang-Min;Kim, Sung-Ho;Ken L. Monson;Werner Goldsmith
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1016-1025
    • /
    • 2003
  • The rupture of blood vessels in the human brain results in serious pathological and medical problems. In particular, brain hemorrhage and hematomas resulting from impact to the head are a major cause of death. As such, investigating the tensile behavior and rupture of blood vessels in the brain is very important from a medical point of view. In the present study, the tensile characteristics of the blood vessels in the human brain were analyzed using a quasi-static uniaxial tensile test, and the properties of the arteries and veins compared. In addition, to compare the tensile behavior and demonstrate the validity of the experimental results, blood vessels from the legs of pigs were also tested and analyzed. The overall results were in accordance with the histological structures and previous medical reports.

Effect of Steel Reinforcement Ratio on the Flexural Behavior of RC Beams Strengthened with CFRP Sheets (탄소섬유쉬트로 보강된 RC부재의 철근량에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • Experimental study has been performed in order to evaluate the effects of steel reinforcement ratio on the flexural behavior of RC beams strengthened with CFRP sheets. The steel reinforcement ratio of $0.78%({\rho}_s/{\rho}_b=24%)$ is selected to have balance failure when control RC beams were strengthened with 1 ply CFRP sheet. Total 6 half-scale specimens were manufactured including each unstrengthened specimens, which have 3 different reinforcement ratios. The specimens strengthened with CFRP sheet consist of under- or over-reinforced beams for the balanced failure condition. Moreover, the behavior of un strengthened or strengthened beams were compared to evaluate flexural performance. The results of this study show that the over-reinforced specimens were failed by concrete crushing prior to CFRP sheet failure by debonding or rupture. On the contrary, the under-reinforced specimen were failed by rupture of CFRP sheet.

  • PDF

Compressive Behavior of Some Vegetables (몇 가지 채소류의 압축거동)

  • 정헌상;박남규;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.466-471
    • /
    • 1996
  • In order to investigate the compression characteristics on the some vegetables-cucumber, garlic, ginger, potato, and radish-compression force, distance, and time were measured with a Struct-O-Graph and correlations between them were investigated. Force-distance and distance-time curves were showed simply and reflection points were showed rarely. The time to rupture point was long of 11.7sec at the compression speed of 60mm/min and of 6.16sec at the compression speed of 120mm/min in potato, and short of 9.65, 4.55sec at the different compression speed in garlic, respectively. The rupture force was large of 16.64~20.00N at the different compression speed in potato and radish, and the sample at rupture point was showed crushing behavior under probe. These phenomena were suggested because compression strength of sample was different. In the result of regression analysis for force-time and distance-time to the rupture point, the correlation coefficients were above 0.96, and difference of among samples was small. The slopes of force-time were large of 1.772~3.385 in cucumber and small of 1.743~3.338 in potato, and the slopes of distance-time were obtained with reverse results.

  • PDF

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

Optimal Design of a Quick-Acting Hydraulic Fuse using Genetic Algorithm and Complex Method (유전자 알고리즘과 콤플렉스법에 의한 고성능 유압휴즈의 최적 설계)

  • Lee, S.R.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.32-38
    • /
    • 2014
  • The hydraulic fuse, which responds to the suddenly increased flow on rupture of a line and shuts off the fluid flow, would prevent large spillage of liquid. The quick-acting hydraulic fuse, which is mainly composed of a poppet, a seat, and a spring, must be designed to minimize the leaked flow and to prevent high collision speed between the poppet and seat during fuse operation on a line rupture. The optimal design parameters of a quick-acting hydraulic fuse were searched using the genetic algorithm and the complex method that are kinds of constrained direct search methods. The dynamic behavior of a quick-acting hydraulic fuse was researched using computer simulations that applied the obtained optimal design parameters.

Analysis of the Pressure Behavior with the Partial Rupture in Closed Vessel During Gaseous Explosion (밀폐공간에서 가스폭발에 의한 개구발생 후의 압력변화에 대한 해석)

  • 윤재건;조한창;신현동
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.40-47
    • /
    • 1999
  • A numerical study on gaseous explosion was carried out to predict the transient pressure behavior with the partial rupture in confined vessels. Equations, assumptions and solutions for central ignition of premixed gases in closed spherical vessels are proposed with various equivalence ratios of gas fuel, as $CH_4$ and $C_3H_8$, vent areas and vent opening pressures. Given vent opening pressure in a vessel, the magnitude of second peak pressure results from the vent areas and burning velocity, varied by equivalence ratio of gas fuel. In a living room of an apartment, the higher second peak pressure than the vent pressure is not appeared due to its large window areas. As vent opening pressure is higher, the larger damage by gaseous explosion is expected and the larger vent area is necessary for relieving the damage. In the same concentration, the gaseous explosion by propane rather than methane shows the larger damage due to its higher adiabatic flame temperature and equivalence ratio.

  • PDF