• Title/Summary/Keyword: Runout Analysis

Search Result 44, Processing Time 0.015 seconds

A Study on Behavior Characteristics and Triggering Rainfall of Debris Flow (토석류의 거동 특성 및 유발강우에 관한 연구)

  • Jang, Changbong;Choi, Youngnam;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • In this study, the behavior characteristics and triggering rainfall of debris flow were investigated on the basis of DB constructed by performing field investigation and collecting the rainfall data at the sites where debris flow occurred around the west of Gangwon and adjacent areas during the last 10 years. For hill slope and channelized type of debris flow, its behavior characteristic was analyzed through runout channel of debris flow divided into zone of initiation, transportation and deposition and its magnitude was estimated by considering erosion at zones of initiation and transportation. Some considerations related to establishment of landslide forecasting criterion were raised by comparing the analyzed results of analysis of rainfall at the time of debris-flow occurrence with the previous researches about the triggering rainfall of debris flow. In addition, an ID curve of inducing debris flow adequate to the investigated site was proposed and compared with results of previous study.

Development of a precision machining process for the outer cylinder of vacuum roll for film transfer (필름 이송을 위한 진공 롤 외통의 정밀가공 공정개발)

  • Eui-Jung Kim;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • Unlike the roll-to-roll process that uses a steel roll and a nip roll, a vacuum roll can hold and transfer a thin film using a single roll. To precisely manufacture a vacuum roll, a thin outer cylinder must be machined, which is assembled on the outside of the roll and contacts the film via vacuum pressure. In this study, the effects of jaw width and chucking force on the deformation of the outer cylinder during the turning process were investigated using analysis, and a precision machining and burr removal process was developed. The deformation of the outer cylinder decreased almost linearly with increasing jaw width and increased with higher chucking force and larger cylinder diameter. Additionally, the deflection due to the weight of the outer cylinder was approximately three times greater than that caused by film tension. For the machined outer cylinder, a burr removal experiment was conducted, and concentricity and cylindricity were measured. Using a device that removes burrs by rotating a wheel connected to the main shaft at high speed, it was found that burrs generated on the inner diameter could be removed very efficiently. On the vacuum side, the concentricity errors of the inner and outer diameters were 0.015 mm and 0.014 mm, respectively, and on the opposite side, they were 0.006 mm and 0.010 mm, respectively. Additionally, the measurement of Total Indicator Runout (TIR) according to the angle showed that the maximum cylindricity of the outer and inner diameters was 0.02 mm and 0.025 mm, respectively. Finally, through burr-height measurement at the hole boundary, it was found that the heights were within 0.05 mm.

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan (대룡산 토석류 특성 분석 및 위험지역 예측에 관한 연구)

  • CHOI, Young-Nam;LEE, Hyung-Ho;YOO, Nam-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.48-62
    • /
    • 2018
  • In this study, landslide of debris flow occurred at 51 sites around Daeryounsan located in between Chuncheon-si and Hongcheon-gun during July in 2013 were investigated in field and behavior characteristics of debris flow were analyzed on the basis of records of rainfall and site investigation. According to debris flow types of channelized and hill slope, location and slope angle of initiation and deposit zone, and width and depth of erosion were investigated along entire runout of debris flow. DEM(Digital Elevation Model) of Daeryounsan was constructed with digital map of 1:5,000 scale. Land slide hazard was estimated using SINMAP(Stability INdex MAPping) and the predicted results were compared with field sites where debris flow occurred. As analyzed results, for hill slope type of debris flow, predicted sites were quite comparable to actual sites. On the other hand, for channelized type of debris flow, debris flow occurrence sites were predicted by using stability index associated with topographic wetness index. As analyzed results of 4 different conditions with the parameter T/R, Hydraulic transmissivity/Effective recharge rate, proposed by NRCS (Natual Resources Conservation Service), predicted results showed more or less different actual sites and the degree of hazard tended to increase with decrease of T/R value.