• Title/Summary/Keyword: Runoff rate

Search Result 442, Processing Time 0.022 seconds

Characteristics of the Pollutants Ronoff on the Tamjin A and B Watershed with Discharge Variation (유량변동에 따른 탐진 A와 B유역에서의 오염물질 유출 특성)

  • Park, Jinhwan;Lim, Byungjin;Jung, Jaewoon;Kim, Daeyoung;Oh, Taeyoun;Lee, Dongjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.917-925
    • /
    • 2012
  • In this study, we report the runoff characteristics of pollutants for Tamjin A and B watershed in Tamjin river basin using statistical analysis, such as correlation analysis and regression equation. Flow rate and water qualtiy data collected from 2 sampling sites(Tamjin A and B watershed) during 3 years(2009~2011) were analyzed for biochemical oxygen demand(BOD), total nitorgen(TN), total phosphorus(TP) and suspended solid(SS). The results showed that strong correlations were observed between flow rate and SS in Tamjin A, while weak correlations were observed among the BOD, TN, and TP. In Tamjin B, strong correlations were observed among the flow rate, SS and T-P except BOD and TP. Meanwhile, the values of $R^2$ for regression equations between flow rate and pollutants load were greater than 0.7. Results of these statistics indicated that there was a good agreement between flow rate and pollutants load. Also, the flow rate exponents of regression equations for BOD, TN, and TP were smaller than 1 in Tamjin A. In Tamjin B, flow rate exponents of regression equation for BOD and TP were smaller than 1. These results indicated that concentrations of BOD, TN, TP in Tamjin A and concentrations of BOD and TP were decreased as the flow rate was increased. This means that rater than nonpoint sources, point sources affect BOD, TN and TP in Tamjin A and BOD and TP in Tamjin B.

Evaluation of Groundwater Flow Analysis Using Rainfall-Recharge Estimation Methods

  • Choi, Yun-Yeong;Sim, Chang-Seok;Bae, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.561-569
    • /
    • 2007
  • This study used SCS-CN method to estimate the real recharge of the study area which is one of the most reasonable techniques to estimate groundwater recharge when there is no available runoff data in a watershed. From the results of tile real recharge analysis for the study area using SCS-CN method, it was analyzed that the year 1994 when the drought was severe shotted the lowest recharge of 106.3mm with recharge rate of 12.4%, and the highest recharge of 285.6mm with recharge rate of 21.8% occurred in 1990. Yearly average recharge of 213.2mm was obtained, and tile average recharge rate was 16.9%/year. KOG-FLOW model which has powerful post process functions consists of setting environments for input parameters in Korean language, and help function is added to each input data. Detailed information for each parameter is displayed when the icon is placed on the input parameters, and geologic boundaries or initial head data for each layer can be set easily on work sheet. The relative errors (R. E.) for each model's observed values and calculated values are $0.156{\sim}0.432$ in case of KOG-FLOW, and $0.451{\sim}1.175$ in case of WINFLOW, therefore it is known that KOG-FLOW model developed in this study produced results compared to observed head values.

Estimation of irrigation return flow from paddy fields based on the reservoir storage rate

  • An, Hyunuk;Kang, Hansol;Nam, Wonho;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study proposed a simple estimation method for irrigation return flow from paddy fields using the water balance model. The merit of this method is applicability to other paddy fields irrigated from agricultural reservoirs due to the simplicity compared with the previous monitoring based estimation method. It was assumed that the unused amount of irrigation water was the return flow which included the quick and delayed return flows. The amount of irrigation supply from a reservoir was estimated from the reservoir water balance with the storage rate and runoff model. It was also assumed that the infiltration was the main source of the delayed return flow and that the other delayed return flow was neglected. In this study, the amount of reservoir inflow and water demand from paddy field are calculated on a daily basis, and irrigation supply was calculated on 10-day basis, taking into account the uncertainty of the model and the reliability of the data. The regression rate was calculated on a yearly basis, and yearly data was computed by accumulating daily and 10-day data, considering that the recirculating water circulation cycle was relatively long. The proposed method was applied to the paddy blocks of the Jamhong and Seosan agricultural reservoirs and the results were acceptable.

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.

Estimation of Precipitation Recharge in the Pyungchang River Basin Using SCS-CN Method (SCS-CN방법을 이용한 평창강 유역의 강수 함양량 선정)

  • Lee Seung Hyun;Bae Sang Keun
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1033-1039
    • /
    • 2004
  • The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to estimate the precipitation recharge in the Pyungchang river basin. Two small areas of the basin are selected for this study. The CN values are determined by considering the type of soil, soil cover and land use with the digital map of 1:25,000. Forest covers more than $94{\%}$ of the study area.. The CN values for the study area vary between 47 in the forest area and 94 in the bare soil under AMC 2 condition. The precipitation recharge rate is calculated for the year when the precipitation data is available since 1990. To obtain the infiltration rate, the index of CN and five day antecedent moisture conditions are applied to each precipitation event during the study period. As a result of estimation, the value of precipitation recharge ratio in the study area vary between $15.2{\%}\;and\;35.7{\%}$ for the total precipitation of the year. The average annual precipitation recharge rate is $26.4{\%}\;and\;26.8{\%}$, meaning 377.9mm/year and 397.5mm/year in each basin.

A Proposal of Unit Hydrograph Using Statistical Analysis in Oedo Stream, Jeju (통계적 기법을 적용한 외도천의 단위유량도 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.393-401
    • /
    • 2015
  • Rainfall-runoff model of Jeju Oedo Stream was used to compute the optimal unit hydrograph by HEC-HMS model that reflecting on watershed characteristics. Each rainfall event was comparatively analyzed with the actual flow measurement using Clark, Snyder and SCS synthetic methods for derived unit hydrograph. Subsequently, the null hypothesis was established as p-value for peak flow and peak time of each unit hydrograph by one-way ANOVA(Analysis of variance) was larger than significance level of 0.05. There was no significant difference in peak flow and peak time between different methods of unit hydrograph. As a result of comparing error rate with actual flow measurement data, Clark synthetic unit graph best reflected in Oedo Stream as compared to other methods, and error rate of Clark unit hydrograph was 0.02~1.93% and error rate at peak time was 0~2.74%.

Runoff of Fluazinam Applied in Pepper Field-lysimeter (고추재배 포장 라이시메타를 이용한 fluazinam의 유출 평가)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Kwon, Hye-Young;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.256-263
    • /
    • 2013
  • The field lysimeter study was undertaken to investigate influence of agricultural practice and topography on runoff and erosion loss of fluazinam from the sloped land grown pepper. The WP type formulation was applied on July in 2003~2005. The wash-off rates were from 1.4% to 8.4% of the applied fluazinam. The runoff losses of fluazinam from a series of pepper grown-lysimeter plots were 0.14~0.90% in the first year, 0.01~0.04% in the second year and 0.16~0.37% in the third year for the mulched contour ridge plots, 0.47~1.59% for the mulched up-down direction ridge plots and 0.07~1.05% for the no-mulched contour ridge plots as the control, and they increased with slope degree. Concentrations of fluazinam in runoff water ranged mostly to 10 ${\mu}gL^{-1}$ at the first runoff event. Erosion rates from plots except the mulched up-down direction ridge plots was 0.00~0.21% for 10% and 20% slope-plots and 0.15~1.05% for 30% slope-plots with different slope degrees. Erosion rates from the mulched up-down direction ridge plots were 0.47~1.59% for 10% slope-plots and 0.75~1.05% for 20% slope-plots. Residues of fluazinam in soil at ten days after the application ranged from 0.007 mg $kg^{-1}$ to 0.059 mg $kg^{-1}$ except the soil under the mulch. After then the fluazinam residue in soil was dissipated at the rate of 20 days of half-life to below 0.01 mg $kg^{-1}$ at 60 days after the application.

Analysis on the Characteristics of Nonpoint sources during the Precipitation in Residential Area (강우 시 주거지역에서의 비점오염원 유출특성 분석)

  • Kwon, Heongak;Im, Toehyo;Na, Seungmin;Lee, Chunsik;Cheon, Seuk
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.391-401
    • /
    • 2015
  • In this study, divided into small category groups for the residential area it was carried out monitoring for the runoff during precipitation. Based on the results analyzed according to the nonpoint sources Housing leakage characteristics. Analysis of the rainfall runoff and concentration of each type of exclusive detached house with apartments, in the majority of precipitation types runoff concentrations were higher in early. In the case of a difference of two points per runoff rate rainfall it was largely investigation. The average runoff is estimated loadings of BOD $101.1kg/km^2$, SS $232.2kg/km^2$, T-N $18.2kg/km^2$, T-P $2.0kg/km^2$ detached house case, if the apartment was estimated at point BOD $108.82kg/km^2$, SS $329.18kg/km^2$, T-N $57.67kg/km^2$, T-P $4.21kg/km^2$. The average EMCs is BOD BOD 6.6 mg/L, SS 12.8 mg/L, T-N 1.518 mg/L, T-P 0.099 mg/L detached house case, if the apartment was estimated at point BOD 6.3 mg/L, COD 11.2mg/L, SS 14.5 mg/L, T-N 3.1 mg/L, T-P 0.2 mg/L. The initial 30 percentage calculated based on the initial results, the total flow of 30% if the outflow of detached house showed a net percentage difference to T-P 1.04 > T-N 0.97 > BOD 0.90 > SS 0.80. The apartment area showed the percentage difference in the water quality in the order of BOD 1.49 > T-P 1.40 > SS 1.30 > T-N 0.96 per item.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF