• 제목/요약/키워드: Runoff Error

검색결과 215건 처리시간 0.034초

Hybrid Green Roof-Planter Box System Design and Construction for PNU GI/LID Facility

  • Ladani, Hoori Jannesari;Shin, Hyun Suk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.192-192
    • /
    • 2016
  • Nowadays, stormwaters have been affected by urbanization and climate change. These transition can cause many problems for hydrologic cycle by increasing runoff volume like flood and low water quality. As with other metropolises and peninsulas, Busan has involved with these problems too. Therefore, it is really vital to do some arrangements to solve them by low impact development (LID) technology. In fact, LID has been introduced to reduce runoff by applying some techniques such as green infrastructure (GI). In order to deal with the aforementioned issues in Busan, this study attempts to design and construct a hybrid green roof-planter box system at Pusan National University GI/LID Facility based on local weather. For this purpose, we used experiment and modeling method on some planter boxes and optimized them by trial and error method.

  • PDF

이중편파 레이더의 홍수예보 활용성 평가 (Assessment of Dual-Polarization Radar for Flood Forecasting)

  • 김정배;최우석;배덕효
    • 한국수자원학회논문집
    • /
    • 제48권4호
    • /
    • pp.257-268
    • /
    • 2015
  • 본 연구에서는 이중편파 레이더 추정강우의 홍수예보 활용성을 평가하였다. 비슬산 강우레이더 100 km 반경 내 AWS (Automatic Weather System) 123개 관측소를 대상으로 레이더 추정강우의 오차를 레이더 반경 및 강우강도의 증가에 따라 평가하였다. 이중편파 레이더 추정강우가 단일편파 레이더 추정강우에 비해 오차가 작은 것으로 확인되었다. 또한, 이중편파 레이더 추정강우의 홍수예보 활용성 평가 및 적용을 위해 유역평균강우량을 산정하여 평가하였다. 평가 결과, 이중편파 레이더 추정강우가 단일편파 레이더 추정강우에 비해 관측치에 유사하게 나타났으며, 강우형태에 관계없이 강우 강도가 강한 부분에서 이중편파 레이더의 정확도가 향상됨을 보였다. 그러나 차등반사도를 통해 산정된 강우는 과대추정되는 경향이 나타났다. 연속형 저류함수모형인 SURR 모형에 적용하여 남강댐 유역에 대한 유출해석을 수행하였다. 이중편파 레이더 추정강우를 통한 유출량이 단일편파 레이더 추정강우에 비해 유출용적오차는 약 12~63%, 첨두유량오차는 약 30~42% 감소하였으며, 평균제곱근오차 또한 감소하는 것으로 나타났다. 또한 이중편파 레이더에 의해 산정된 유역평균강우량을 유출모형에 적용할 경우 AWS 강우로부터 추정된 유출결과보다 더 우수한 경우가 있어 향후 홍수예보 활용 시 예보의 정확도 향상에 기여하리라 판단된다.

홍수유출 모형 자동 보정의 벌칙함수를 이용한 기능 향상 연구 (Application of a Penalty Function to Improve Performance of an Automatic Calibration for a Watershed Runoff Event Simulation Model)

  • 강태욱;이상호
    • 한국수자원학회논문집
    • /
    • 제45권12호
    • /
    • pp.1213-1226
    • /
    • 2012
  • 유역유출 모의 모형의 자동 보정에 주로 사용되는 진화계열의 알고리즘은 무제약 최적화 알고리즘이다. 이러한 진화계열 알고리즘에 제약조건을 반영하기 위해서는 제약조건을 다룰 수 있는 별도의 방법이 요구된다. 본 연구의 목적은 진화계열 알고리즘의 일종인 집합체 혼합진화 알고리즘에 벌칙함수를 적용하여 제약조건을 고려할 수 있도록 하는 것이다. 또한, 제약조건을 고려할 수 있는 집합체 혼합진화 알고리즘을 SWMM의 자동 보정 모듈에 적용하여 기존 자동 보정 모듈의 기능을 개선하는 것이다. 홍수유출 해석에서는 첨두유량과 관련된 지표가 중요하므로 첨두유량의 오차와 첨두유량 발생시간의 오차를 제어할 수 있는 제약조건을 구성하였다. 제약조건을 포함하여 구성된 자동 보정 모듈은 밀양댐 유역과 구로1 빗물펌프장 배수유역의 홍수유출 모의 모형에 대하여 적용되었다. 자동 보정의 결과는 제약조건의 포함 유무에 따른 결과를 비교하여제시되었다. 그 결과, 제약조건을 고려함에 따라 본래의 목적함수를 크게 위배하지 않으면서, 첨두유량과 첨두유량 발생시간의 오차가 크게 개선되었다. 또한, 검증을 통해서도 제약최적화를 통한 자동보정의 적절성이 검토되었다. 결론적으로 벌칙함수를 이용한 제약조건의 반영을 통해 자동 보정 모듈의 기능을 향상시킬 수 있었다.

탱크모형을 이용한 일별 오염부하량의 산정 (Determination of Daily Pollutant Loadings Using TANK Model)

  • 엄명철;권순국
    • 한국농공학회지
    • /
    • 제38권3호
    • /
    • pp.92-100
    • /
    • 1996
  • In order to control the water quality in rivers or lakes, it is needed to evaluate accurate amount of pollutant loadings from watersheds. The daily pollutant loadings were simulated using the pollutant loading calculation model which was composed of mathematical equations superimposed on the TANK model. The calibration of runoff and pollutant loading parameters were carried out with observed data, using a trial-and-error method. In addition, the proposed model was applied to evaluate its applicability for the representative watershed, the Bokha river watershed, Icheon city, Korea. The parameters of SS and T-P showed large values in the first tank while T-N showed large in the second tank. As a result of simulating the daily pollutant loadings by the pollutant loading calculation model, all of SS, T-N and T-P loadings were increased or decreased according to the amount of runoff discharge. Especially, it was apparent that SS and T-P loadings were significantly influenced by the runoff variation when it was rain. These results could partly explain that SS and T-P would occur mainly from the surface runoff while T-N would occur from both surface and subsurface flow.

  • PDF

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

신경회로망을 이용한 유출수문곡선 모의에 관한 연구 (A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network)

  • 안경수;김주환
    • 한국수자원학회논문집
    • /
    • 제31권1호
    • /
    • pp.13-25
    • /
    • 1998
  • 신경회로망은 어떤 사상에 대한 인과관계를 연상기억능력을 통하여 인식할 수 있는 기능을 가지고 있을 뿐 아니라 비선형현상에 대한 적응능력이 뛰어나 수문계의 강우-유출 현상에 대한 적용가능성은 많으나 이를 수문학적으로 검증하는데는 아직 검토단계라 할 수 있으며 적용에 따른 방법론에 대한 연구가 필요하다 할 수있다. 본 연구에서는 하천유역에서 호우의 발생에 따른 하천의 홍수유출수문곡선을 모의하기 위한 블랙박스모형으로서 신경회로망이론의 적용에 따른 문제를 수문학적으로 규명하고자 하였다. 이를 위한 방법으로서 홍수발생의 직접적인 원인인 강우패턴을 신경회로망의 입력패턴으로하고 이에 따른 출력패턴을 유출수문곡선이라는 가정하에 신경회로망모형을 구성하고 평창강유역에서 발생된 과거 홍수기록자료를 이용하여 그 결과를 제시하였다. 본 연구결과에 의하면 신경회로망의 학습이 수행되는 동안 어떠한 형태로든 수문학적 개념을 토대로 구성된 모형의 구조에 잘 적응되고 있음을 알수 있었다. 이 결과를 토대로 지금까지 복잡한 과정을 거쳐야하는 강우-유출 모형화 과정에서 발생되는 문제점들을 효율적으로 해결할 수 있는 접근방법으로서 활용될수 있을 것으로 기대된다.

  • PDF

지상인자에 의한 순간단위도 유도와 유출량 예측 (Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters)

  • 천만복;서승덕
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

공간 분포된 강우를 사용한 유출 매개변수 추정 및 강우오차가 유출계산에 미치는 영향분석 (A Runoff Parameter Estimation Using Spatially Distributed Rainfall and an Analysis of the Effect of Rainfall Errors on Runoff Computation)

  • 윤용남;김중훈;유철상;김상단
    • 한국수자원학회논문집
    • /
    • 제35권1호
    • /
    • pp.1-12
    • /
    • 2002
  • 본 연구에서는 공간적으로 분포된 강우자료를 바탕으로 한 강우유출관계를 고찰하고, 기존의 공간 평균된 강우유출모형과 비교하여 유역을 공간 평균함으로써 내재되는 불확실성을 분석하여 이를 정량화시킬 수 있는 방법을 모색하였다. 과거 관측된 호우사상을 단순 크리깅 기법을 이용하여 공간적으로 분포된 강우자료를 구축하였다. 공간 분포된 강우와 공간평균강우의 유출을 비교하기 위하여 공간 분포된 강우를 수정 Clark 방법에 의해서 유출계산을 수행한 결과와 지점 강우자료를 추출하여 티센 평균한 공간평균강우를 Clark방법에 의해서 유출 계산한 결과를 서로 비교하였다. 또한 강우의 관측오차와 이로부터 발생되는 유출오차를 정의한 후, 강우관측소의 밀도를 다양하게 변화시켜가며 모의하여 강우의 관측오차가 유출해석에 미치는 영향을 분석하였다. 본 연구결과 다음과 같은 결론을 도출하였다. 1) 공간 분포된 강우자료가 이용될 경우 기존에 추정된 Clark방법 유출 매개변수의 사용이 가능할 것으로 판단된다. 2) 수정 Clark 방법의 경우는 강우는 공간적인 변동성을 고려한 유출 계산이 가능하기 때문에 이에 대한 불확실성이 일부 제거된 상태에서 매개변수 추정이 가능하게 되며, 따라서 전통적인 Clark방법의 경우보다 인정적인 매개변수를 추정할수 있을 것으로 판단된다. 3) 강우오차 및 유출오차는 강우관측소의 밀도가 높아짐에 따라 지수함수적으로 감소하고 있으며, 오차의 범위 또한 밀도가 증가할수록 평균오차 주위로 수렴하는 것으로 보여진다. 4) 강우오차는 강우관측소의 밀도가 작을수록 유출에 보다 큰 영향력을 미치고 있음을 알 수 있었다.

농업소유역의 홍수유출량 추정을 위한 단위도 모형 비교연구 (A Comparative Study of Unit Hydrograph Models for Flood Runoff Simulation at a Small Watershed)

  • 성충현;김상민;박승우
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.17-27
    • /
    • 2008
  • In this study, three different unit hydrograph methods (Snyder, SCS, Clark) in the HEC-HMS were compared to find better fit with the observed data in the small agricultural watershed. Baran watershed, having $3.85km^2$ in size, was selected as a study watershed. The watershed input data for HEC-HMS were retrieved using HEC-GeoHMS which was developed to assist making GIS input data for HEC-HMS. Rainfall and water flow data were monitored since 1996 for the study watershed. Fifty five storms from 1996 to 2003 were selected for model calibration and verification. Three unit hydrograph methods were compared with the observed data in terms of simulated peak runoff, peak time and total direct runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the observed peak runoff was $0.8666{\sim}0.8736$ and root mean square error, RMSE, was $5.25{\sim}6.37\;m^3/s$ for calibration stages. In the model verification, $R^2$ for the observed peak runoff was $0.8588{\sim}0.8638$ and RMSE was $9.57{\sim}11.80\;m^3/s$, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well agreed with the observed data. SCS unit hydrograph method showed best fit, but there was no significant difference among the three unit hydrograph methods.

수질 및 유량자료의 기초통계량 분석에 따른 공간분포 파악을 위한 SOM의 적용 (Application of SOM for the Detection of Spatial Distribution considering the Analysis of Basic Statistics for Water Quality and Runoff Data)

  • 진영훈;김용구;노경범;박성천
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.735-741
    • /
    • 2009
  • In order to support the basic information for planning and performing the environment management such as Total Maximum Daily Loads (TMDLs), it is highly recommended to understand the spatial distribution of water quality and runoff data in the unit watersheds. Therefore, in the present study, we applied Self-Organizing Map (SOM) to detect the characteristics of spatial distribution of Biological Oxygen Demand (BOD) concentration and runoff data which have been measured in the Yeongsan, Seomjin, and Tamjin River basins. For the purpose, the input dataset for SOM was constructed with the mean, standard deviation, skewness, and kurtosis values of the respective data measured from the stations of 22-subbasins in the rivers. The results showed that the $4{\times}4$ array structure of SOM was selected by the trial and error method and the best performance was revealed when it classified the stations into three clusters according to the basic statistics. The cluster-1 and 2 were classified primarily by the skewness and kurtosis of runoff data and the cluster-3 including the basic statistics of YB_B, YB_C, and YB_D stations was clearly decomposed by the mean value of BOD concentration showing the worst condition of water quality among the three clusters. Consequently, the methodology based on the SOM proposed in the present study can be considered that it is highly applicable to detect the spatial distribution of BOD concentration and runoff data and it can be used effectively for the further utilization using different water quality items as a data analysis tool.