• 제목/요약/키워드: Runoff Coefficient

검색결과 328건 처리시간 0.025초

A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics (유역특성인자를 활용한 Sacramento 장기유출모형의 매개변수 지역화 기법 연구)

  • Kim, Tae-Jeong;Jeong, Ga-In;Kim, Ki-Young;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • 제48권10호
    • /
    • pp.793-806
    • /
    • 2015
  • The simulation of natural streamflow at ungauged basins is one of the fundamental challenges in hydrology community. The key to runoff simulation in ungauged basins is generally involved with a reliable parameter estimation in a rainfall-runoff model. However, the parameter estimation of the rainfall-runoff model is a complex issue due to an insufficient hydrologic data. This study aims to regionalize the parameters of a continuous rainfall-runoff model in conjunction with a Bayesian statistical technique to consider uncertainty more precisely associated with the parameters. First, this study employed Bayesian Markov Chain Monte Carlo scheme for the estimation of the Sacramento rainfall-runoff model. The Sacramento model is calibrated against observed daily runoff data, and finally, the posterior density function of the parameters is derived. Second, we applied a multiple linear regression model to the set of the parameters with watershed characteristics, to obtain a functional relationship between pairs of variables. The proposed model was also validated with gauged watersheds in accordance with the efficiency criteria such as the Nash-Sutcliffe efficiency, index of agreement and the coefficient of correlation.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • 제39권3호
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Runoff of an Small Urban Area Using DEM Accuracy Analysis (DEM의 정확도 분석에 의한 도시 소유역의 유출해석)

  • Park, Jin-Hyung;Lee, Kwan-Soo;Lee, Sam-No
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제7권1호
    • /
    • pp.28-38
    • /
    • 2004
  • The purpose of this study is to analyze the urban hydrologic state by the use of GIS, resolution and interpolation. The determination coefficient($R^2$) and Regression Formula were derived from the contour of digital map for the accuracy, and DEM data was made by using TIN interpolation by the size of the grid. By using the observed DEM data, topographical factors were extracted from the small basin, size, the width of a basin and the slope, and were applied in the urban runoff model. Through the model, we tried to find out the most suitable runoff model in a small basin of Yosu-Munsu area. As a result of applying models to the drainage considered, the runoff hydrograph estimated by SWMM model was closer to the observed one than that estimated by ILLUDAS model. The difference between the runoff hydrograph by SWMM and the observed one is maximum error of 19%, minimum error of 5% and average error of 13%. The influence of duration in contrast to pick time is insignificant in a urban small basin. As a conclusion of this study, SWMM model was more suitable and applicable for the urban runoff model than ILLUDAS model due to its accuracy and various abilities.

  • PDF

Mathematical Description of Soil Loss by Runoff at Inclined Upland of Maize Cultivation (옥수수 재배 경사지 밭에서 물 유출에 따른 토양유실 예측 공식)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keon;Kwak, Han-Kang;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제38권2호
    • /
    • pp.66-71
    • /
    • 2005
  • Soil loss into stream and river by runoff shall be considered for non-point source pollution management as national land conservation. The purpose of this study was to develop the mathematical equation to predict soil loss from inclined uplands of maize cultivation due to the runoff by rainfall which mainly converges on July and August. Soil loss was concentrated on May because of low canopy over an entire field in 2002 and on June and July because of heavy rainfall in 2003. By regression analysis the relation between runoff and soil loss can be represented by a linear equation of y =1.5291x - 3.4933, where y is runoff ($Mg\;ha^{-1}$) and x is soil loss ($kg\;ha^{-1}$). The determination coefficient of this equation was 0.839 (P<0.001). Therefore, the mathematical equation derived from the practical experiment at the inclined upland can be applicable to predict soil loss accompanied by runoff due to periodic rainfall converging on short periods within a couple of months.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System (수문학적 가뭄전망을 위한 GloSea5의 활용체계 구축 및 예측성 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo;Cheong, Hyun-Sook
    • Atmosphere
    • /
    • 제25권2호
    • /
    • pp.271-281
    • /
    • 2015
  • The objectives of this study are to develop a hydrological drought outlook system using GloSea5 (Global Seasonal forecasting system 5) which has recently been used by KMA (Korea Meteorological Association) and to evaluate the forecasting capability. For drought analysis, the bilinear interpolation method was applied to spatially downscale the low-resolution outputs of GloSea5 and PR (Predicted Runoff) was produced for different lead times (i.e., 1-, 2-, 3-month) running LSM (Land Surface Model). The behavior of PR anomaly was similar to that of HR (Historical Runoff) and the estimated values were negative up to lead times of 1- and 2-month. For the evaluation of drought outlook, SRI (Standardized Runoff Index) was selected and PR_SRI estimated using PR. ROC score was 0.83, 0.71, 0.60 for 1-, 2- and 3-month lead times, respectively. It also showed the hit rate is high and false alarm rate is low as shorter lead time. The temporal Correlation Coefficient (CC) was 0.82, 0.60, 0.31 and Root Mean Square Error (RMSE) was 0.52, 0.86, 1.20 for 1-, 2-, 3-month lead time, respectively. The accuracy of PR_SRI was high up to 1- and 2-month lead time on local regions except the Gyeonggi and Gangwon province. It can be concluded that GloSea5 has high applicability for hydrological drought outlook.

An Analysis of the Rainfall-Runoff of Natural Watershed Using the Hydraulic Routing Method (수리학적 추적 방법을 이용한 자연하천의 강우유출 해석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • 제38권7호
    • /
    • pp.555-564
    • /
    • 2005
  • In this study, a simple rainfall-runoff model was proposed by using the hydraulic routing model that requires relatively few parameters. The parameters of this model were estimated by the watershed characteristics data, and were applied to the Soyang watershed and Ui stream watershed by using the kinematic wave for overland flow and dynamic wave routing for channel routing. In order to demonstrate validity, the proposed approach was compared to the HEC-1 model for the Soyang watershed. As the results of modeling have shown, the hydraulic model shows reasonable results similar to that of the HEC-1 model. This model also represents good results for the Ui stream watershed. Hence, even if this model is a simple rainfall-runoff model using general methodology, it is competitive to the natural watershed. However, it is still difficult to estimate the roughness coefficient and the catchment width, and therefore this model is in need of such supplements.

Determination of EMC and Unit Loading of Rainfall Runoff from Forestry-Crops Field (산림과 밭 지역 강우 유출수의 EMC 및 원단위 산정)

  • Won, Chul-hee;Choi, Yong-hun;Seo, Ji-yeon;Kim, Ki-cheol;Shin, Min-hwan;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • 제25권4호
    • /
    • pp.615-623
    • /
    • 2009
  • The research of the determination of event mean concentration (EMC) was focussed combined sewer overflows and highway runoff in korea. But those of non-urban areas are few. In this study, EMC and unit loading on land use types in Nogok watershed were estimated by runoff loading of non-point source (NPS) on non-urban area. Two monitoring sites were equipped with an automatic velocity meter, flow meter, and water sampler. Monitoring was conducted at two monitering site during the rainy season. The results show that the EMC ranges in forest land use are 1.3~2.6 mg/L for BOD, 2.0~16.1 mg/L for SS, 0.1~2.1 mg/L for TN, and 0.12~0.49 mg/L for TP. The unit loading of NPS in this study was difficult to compare directly with that used conventionally because of the difference of field investigation. In near future, it needs to conduct more systematic and long-term research about NPS within the watershed. The results of this research can be used to estimate the total pollution load management system (TPLMS) program in korea.

Discussion for the Effectiveness of Radar Data through Distributed Storm Runoff Modeling (분포형 홍수유출 모델링을 통한 레이더 강우자료의 효과분석)

  • Ahn, So Ra;Jang, Cheol Hee;Kim, Sang Ho;Han, Myoung Sun;Kim, Jin Hoon;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제55권6호
    • /
    • pp.19-30
    • /
    • 2013
  • This study is to evaluate the use of dual-polarization radar data for storm runoff modeling in Namgang dam (2,293 $km^2$) watershed using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Bisl dual-polarization radar data for 3 typhoons (Khanun, Bolaven, Sanba) and 1 heavy rain event in 2012 were obtained from Han River Flood Control Office. Even the radar data were overall less than the ground data in areal average, the spatio-temporal pattern between the two data was good showing the coefficient of determination ($R^2$) and bias with 0.97 and 0.84 respectively. For the case of heavy rain, the radar data caught the rain passing through the ground stations. The KIMSTORM was set to $500{\times}500$ m resolution and a total of 21,372 cells (156 rows${\times}$137 columns) for the watershed. Using 28 ground rainfall data, the model was calibrated using discharge data at 5 stations with $R^2$, Nash and Sutcliffe Model Efficiency (ME) and Volume Conservation Index (VCI) with 0.85, 0.78 and 1.09 respectively. The calibration results by radar rainfall showed $R^2$, ME and VCI were 0.85, 0.79, and 1.04 respectively. The VCI by radar data was enhanced by 5 %.

Application of Surface Cover Materials and Soil Amendments for Reduction of Non-Point Source Pollution from Upland Fields (배추와 무밭에서 발생하는 비점오염원 저감을 위한 피복재와 토양개량제 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Shin, Hyun Jun;Kum, Dong Hyuk;Choi, Yong Hun;Won, Chul Hee;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제55권4호
    • /
    • pp.21-28
    • /
    • 2013
  • The objective of the study was to investigate the effect of rice straw mat, rice straw mat with PAM (Polyacrylamide) and gypsum addition on surface runoff and sediment discharge in field. Six experimental plots of $5{\times}22m$ in size and 3 % in slope prepared on gravelly sandy loam soil were treated with control, rice straw mat cover with gypsum and rice straw mat cover with gypsum and PAM. Radish in Spring and Chinese cabbage in autumn growing seasons were cultivated. Non point source (NPS) pollution discharge was monitored and compared among the treatments. Rainfall of the 10 monitored events ranged from 17.0 mm to 93.5 mm. Runoff coefficient of the events was 0.005~0.239 in control plot, 0~0.176 in rice straw plot with gypsum and 0~0.046 in rice straw mat plot with gypsum and PAM. When compared to the control plot, the runoff amount was reduced by 10.4~100 % (Ave. 60.8) in rice straw plot with gypsum and 80.7~100 % (Ave. 96.7 %) in rice straw mat plot with gypsum and PAM. The reduction of NPS pollution load was 54.6 % for BOD5, 71.5 % for SS, 41.6 % for TN and 61.4 % for T-P in rice straw with gypsum plot and 91.9 % for BOD5, 92.0 % for SS, 88.0 % for TN and 88.5 % for T-P in rice straw mat with gypsum and PAM plot. This research revealed that rice straw mat cover with soil amendments on the soil surface could not only increase the crop yield but also reduce the NPS pollution loads substantially.