• 제목/요약/키워드: Runoff Analysis

검색결과 1,378건 처리시간 0.036초

도시하수도망에 대한 유출모형의 남용과 유출해석 (Runoff Analysis and Application of Runoff Model of Urban Storm Drainage Network)

  • 박성천;이관수
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.33-42
    • /
    • 1996
  • This research is to show the application of runoff model and runoff analysis of urban storm drainage network. the runoff models that were used for this research were RRL, ILLUDAS, and SWMM applicative object basin were Geucknak-chun and Sangmu drainage basin located in Seo-Gu, Kwangju. The runoff analysis employed the design storm that distributed the rainfall intensity according to the return period after the huff's method. The result from the comparative analysis of the three runoff models was as follows The difference of peak runoff by return period was 20-30% at Sangmu drainage area of $3.17 Km^2$, while less than 10% at Geucknak-chun drainage area of $12.7 Km^2$. The peak runoff were similar to all models. At the runoff hydrograph the times between rising and descending points were in the sequence of RRL, ILLUDAS and SWMM, but the peak times were similar to all models. The conveyance coefficient to examine the conveyance of the existing drainage network was 0.94-1.37, which means insecure, in Geucknak-chun drainage basin and 0.69-1.16, which means secure, in sangmu drainage basin.

  • PDF

유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발- (The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method -)

  • 서규우;조원철
    • 한국수자원학회논문집
    • /
    • 제31권3호
    • /
    • pp.243-252
    • /
    • 1998
  • 본 연구에서는 새로운 무차원값을 제시하여 도시유출모형의 매개변수결정을 위한 상대적인 민감도분석을 실시하여 매개변수별 민감도특성을 구명하였다. 민감도분석을 위한 무차원값으로 총유출량비,첨두유출량비, 유출민감도비, 민감도비율을 다음과 같이 개발하였다. $$ 유역면적의 크기와 강우분포형과 강우지속기간별로 각 적용단계별 총유출량비, 첨두유출량비, 유출민감도를 산정하기 위해 ILLUDAS모형과 SWMM모형의 매개변수를 선저하고 적정 적용범위를 결정하였다.

  • PDF

유역 유출 예측 시스템 개발 (Development of Rainfall-Runoff forecasting System)

  • 황만하;맹승진;고익환;류소라
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

SWAT 모형을 이용한 대유역 강우-유출해석: 메콩강 유역을 중심으로 (Large Scale Rainfall-runoff Analysis Using SWAT Model: Case Study: Mekong River Basin)

  • 이대업;유완식;이기하
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.47-57
    • /
    • 2018
  • This study implemented the rainfall-runoff analysis of the Mekong River basin using the SWAT (Soil and Water Assessment Tool). The runoff analysis was simulated for 2000~2007, and 11 parameters were calibrated using the SUFI-2 (Sequential Uncertainty Fitting-version 2) algorithm of SWAT-CUP (Calibration and Uncertainty Program). As a result of analyzing optimal parameters and sensitivity analysis for 6 cases, the parameter ALPHA_BF was found to be the most sensitive. The reproducibility of the rainfall-runoff results decreased with increasing number of stations used for parameter calibration. The rainfall-runoff simulation results of Case 6 showed that the RMSE of Nong Khai and Kratie stations were 0.97 and 0.9, respectively, and the runoff patterns were relatively accurately simulated. The runoff patterns of Mukdahan and Khong Chaim stations were underestimated during the flood season from 2004 to 2005 but it was acceptable in terms of the overall runoff pattern. These results suggest that the combination of SWAT and SWAT-CUP models is applicable to very large watersheds such as the Mekong for rainfall-runoff simulation, but further studies are needed to reduce the range of modeling uncertainty.

낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석 (Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin)

  • 김성원
    • 한국농공학회지
    • /
    • 제41권5호
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

지형공간 특성자료를 이용한 하천유역의 강우-유출해석 (Rainfall-Runoff Analysis of River Basin Using Spatial Data)

  • 안승섭;이증석;도준현
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.949-955
    • /
    • 2003
  • The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM) materials. This research aimed at suggesting the applicability of the CELLMOD Model, a distribution-type model, in interpreting runoff based on the topological properties of a river basin, by carrying out runoff interpretation far heavy rains using the model. To examine the applicability of the model, the calculated peaking characteristics in the hydrograph was analyzed in comparison with observed values and interpretation results by the Clark Model. According to the result of analysis using the CELLMOD Model proposed in the present research for interpreting the rainfall-runoff process, the model reduced the physical uncertainty in the rainfall-runoff process, and consequently, generated improved results in forecasting river runoff. Therefore it was concluded that the algorithm is appropriate for interpreting rainfall-runoff in river basins. However, to enhance accuracy in interpreting rainfall-runoff it is necessary to supplement heavy rain patterns in subject basins and to subdivide a basin into minor basins for analysis. In addition, it is necessary to apply the model to basins that have sufficient observation data, and to identify the correlation between model parameters and the basin characteristics(channel characteristics).

탱크 모델에 의한 홍수(洪水) 유출량(流出量) 해석(解析)에 관(關)한 연구(硏究) (A study on the flood runoff analysis with TANK MODEL)

  • 홍창선;최한규
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.95-101
    • /
    • 1983
  • This study aims at the determination of the coefficienties of runoff and infiltration affecting runoff. The rating curve is more available than the peak flood runoff to determine flood control plan of flood control reservoir and the volume of hydroelectric power plant, or to make multipurpose dam. In hydrologic analysis and design, it is necessary to develop relations between precipitation and runoff, possible using some of the factors affecting runoff as parameters. In order to calculate the runoff discharge, the runoff process constituting elements are divided to the surface runoff, the subsurface runoff and the groundwater runoff. By comparing the computed hydrograph with the measured hydrograph, determinned the watershed TANK Model constant Varying the tank model constant for approximating the computed hydrograph to the measured hydrograph.

  • PDF

실시간 물 관리 운영을 위한 유역 유출 모의 모형 개발 (Development of Basin-wide runoff Analysis Model for Integrated Real-time Water Management)

  • 황만하;맹승진;고익환;박정인;류소라
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.507-510
    • /
    • 2003
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. A short-term water demand forecasting technology will be developed taking into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

강우-유출모형 매개변수의 최적화 및 불확실성 분석 (Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model)

  • 문영일;권현한
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.723-726
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established, uncertainty analysis, therefore, are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an expected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

  • PDF

RUNOFF ANALYSIS BY SCS CURVE NUMBER METHOD

  • Yoon, Tae-Hoon
    • Korean Journal of Hydrosciences
    • /
    • 제4권
    • /
    • pp.21-32
    • /
    • 1993
  • The estimates of both runoff depth and peak runoff by the basin runoff curve numbers, which are CN-II for antecedent moisture condition- II and CN -III for antecedent moisture condition-III, obtained from hydrological soil-cover complexes of 26 watersheds are investigated by making use of the observed curve numbers, which are median curve number and optimum curve number, computed from 250 rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of both runoff depth and peak runoff. For ungaged basin, found is that for the estimate of runoff depth CN-II is adequate and for peak runoff CN-II is suitable. Also investigated is the variation of the runoff curves during storms. By the variable runoff curve numbers, the prediction of runoff depth and peak runoff can be improved slightly.

  • PDF