• Title/Summary/Keyword: Running speed

Search Result 1,200, Processing Time 0.029 seconds

A Study on the Damper Displacements of High Speed Rolling-stock Running on Service Lines (실선로 주행에 따른 고속철도차량 댐퍼 변위에 대한 연구)

  • Hur H.M.;Lee C.W.;You W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.261-262
    • /
    • 2006
  • This study was intended to research the displacement characteristics of dampers for Korea hish-speed rolling-stock for the purpose of developing the protective and maintenance technology of damper. For this, we measured the displacements of dampers in the actual running conditions of high speed railway vehicles. Displacement data were analyzed depending on the service sections, with which the valuable data necessary for maintenance in the future could be obtained.

  • PDF

Analysis on the Running Stability of Rolling-stock according to Wheel Profile Wear (차륜답면형상 마모에 따른 차량 주행안정성 영향 분석)

  • Hur, Hyun-Moo;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • To analyze the effect of wear of wheel profile on the running stability of rolling-stock, theoretical and experimental studies were conducted on the profiles used in conventional lines. In experiment using 1/5 scale model to verify the results of the theoretical analysis, the test results of the critical speed for worn wheel profile samples show similar trend. In case of the conical type wheel profile(Profile 40), the equivalent conicity is increased with flange wear. But in case of the arc type wheel profile(Profile 20h), the equivalent conicity is decreased with flange wear. And the critical speed of the bogie was inverse proportion to the equivalent conicity. It is shown that the variation of the critical speed with the wheel wear could be changed according to the design concept and wear pattern of wheel profile. Results of the theoretical and experimental studies are discussed here.

A comparison study on the deck house shape of high speed planing crafts for air resistance reduction

  • Park, Chung-Hwan;Park, Hee-Seung;Jang, Ho-Yun;Im, Namkyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.867-875
    • /
    • 2014
  • Planing crafts were specifically designed to achieve relatively high speeds on the water. When a planing craft is running at high speed, dynamic pressure on the bottom makes the boat rise on the surface of the water. This reduces the area of the sinking surface of the boat to increase air resistance. Air resistance means the resistance that occurs when the hull and deck house over the surface of the water come in contact with the air current. In this paper, we carried out a CFD numerical analysis to find optimal deck houses that decreased air-resistance on the water when planing crafts are running at high speed. We finally developed the deck house shape of high-speed planing crafts that optimally decreased air resistance.

Research for the Railway Route Planning Adjacent the Protective Zone of Cultural Assets (문화재 보호구역 주변 근접통과 구간의 철도노선 계획 사례 연구)

  • Roh, Byoung-Kuk;Kim, Jae-Bok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2258-2270
    • /
    • 2008
  • After rapid running is begun in domestic, problem by the train wind that was not considered at existent train running appeared. If the High-Speed railway business speed rises by 350km/h in the future, is going to become more big issue. This study conducts an experiment that measure in local about KTX train beside Gyeongbu High-Speed railway track about aerodynamics effect that happen by passage of train and analyzed. In case KTX II runs with the 350km/h speed, forecasted effect that get in the simple vertical surfaces parallel to tracks according to distance from rail center. Compared construction size with structural analysis in case do not consider with case that consider the train wind about soundproofing walls representatively. As a result, proposed wind load standard that apply at soundproofing walls design.

  • PDF

Running safety analysis of tilting vehicle when speed-up limited speed 40 km/h in curved track (곡선선로에서 제한속도를 40 km/h 증속 운행시 틸팅차량의 주행안전성 분석)

  • Ham, Young-Sam;Seo, Jung-Won;Lee, Dong-Hyong;Kwon, Seok-Jin;Kim, Jae-Chul;Lee, Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1587-1591
    • /
    • 2009
  • Safety of railroad is result of reliability which is received from test & evaluation of system. Railroad system is consisted of various sub system such as vehicle, supply of electric power, signal, communication, rail track construction, operation. To secure safety of railroad, evaluation about parts, assembly, sub system, whole system etc.. that compose railroad is essential. In this paper, I wish to describe for results that analyze korean tilting vehicle's derailment coefficient developed by national research achievement. Result that evaluation korean tilting vehicle's running safety, verified that secure even if speed-up 30 km/h than operating speed of present in curved track.

  • PDF

Evaluation of running safety for korean high speed railway vehicle (한국형 고속철도차량의 주행안전성 평가)

  • Ham Young-Sam;Hur Hyun-Moo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.316-321
    • /
    • 2003
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, adhesion of strain gauges and static load test, running test result of main line.

  • PDF

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

Measurement of EMI by High-Speed Train System (고속전철 시스템의 EMI 측정)

  • Gimm, Yoon-Myoung;Ju, Young-Jun;Yoo, Jea-Seong;Koo, Bon-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1157-1162
    • /
    • 2008
  • High speed train system consumes much electric power during running, and generate much EMI (electromagnetic interference) by arc between the pantograph and the trolley line. In this paper, EMI was measured following EN50121-2, 'Railway applications. - Electromagnetic compatibility. (Emission of the whole railway system to the outside world)', from the running high-speed railway (KTX) at 300 km/h speed. Measured results exceed the limit values of EN50121-2 in low frequency band ($9\;kHz{\sim}150\;kHz$), but they did not exceed the limit values in other higher frequency band ($150\;kHz{\sim}1\;GHz$).

  • PDF

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

The Effects on Kinematics and Joint Coordination of Ankle and MTP Joint as Bending Stiffness Increase of Shoes during Running (달리기 시 인솔의 굽힘 강성 증가에 따른 발목과 중족골 관절의 운동학적 변인 및 관절 협응에 미치는 영향)

  • Kim, Sungmin;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Objective: The aim of this study was to analyze body stability Joint coordination pattern though as bending stiffness of shoes during stance phase of running. Method: 47 male subjects (Age: 26.33 ± 2.11 years, Height: 177.32 ± 4.31 cm, Weight: 65.8 ± 3.87 kg) participated in this study. All subjects tested wearing the same type of running shoes by classifying bending stiffness (A shoes: 3.2~4.1 N, B shoes: 9.25~10.53 N, C shoes: 20.22~21.59 N). They ran 10 m at 3.3 m/s (SD ±3%) speed, and the speed was monitored by installing a speedometer at 3 m intervals between force plate, and the measured data were analyzed five times. During running, ankle joint, MTP joint, coupling angle, inclination angle (anterior-posterior, medial-lateral) was collected and analyzed. Vector coding methods were used to calculate vector angle of 2 joint couples during running: MTP-Ankle joint frontal plane. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that there was an interaction between three shoes and phases for MTP (Metatarsalphalangeal) joint angle (p = .045), the phases in the three shoes showed difference with heel strike~impact peak (p1) (p = .000), impact peak~active peak (p2) (p = .002), from active peak to half the distance to take-off until take-off (p4) (p = .032) except for active peak~from active peak to half the distance to take-off (p3) (p = .155). ML IA (medial-lateral inclination angle) for C shoes was increased than other shoes. The coupling angle of ankle angle and MTP joint showed that there was significantly difference of p2 (p = .005), p4 (p = .045), and the characteristics of C shoes were that single-joint pattern (ankle-phase, MTP-phase) was shown in each phase. Conclusion: In conclusion, by wearing high bending stiffness shoes, their body instability was increased during running.