• Title/Summary/Keyword: Running Attitude

Search Result 70, Processing Time 0.024 seconds

A Study on the Ship Resistance and Moment Prediction for Running Attitude of 30 Feet Catamaran Sailing Yacht (30ft급 쌍동형 세일링 요트의 항주자세에 따른 실선저항 및 모멘트 추정에 대한 연구)

  • Park, Chung-Hwan;Jang, Ho-Yun;Jeong, Jin-Wook;Lee, Byung-Sung;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.321-327
    • /
    • 2010
  • During sailing by wind-driven thrust on the sail, a catamaran sailing yacht generates leeway and heeling. For estimating resistance and moment prediction of a real ship by changing of running attitude, a model test of the ship has to be carried out. This study aims at establishing experimental techniques for a catamaran sailing yacht by changed attitude during running direction. Through the model test, drag and side force of the real ship are predicted. Also through experiment, rolling and yawing moments were considered.

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

Numerical Prediction of Running Attitude and Resistance of Planing Craft (수치계산에 의한 활주선의 항주 자세 및 저항 추정)

  • Oh, Gwangho;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • Prediction of the running posture is important to evaluate the resistance by the numerical calculation for a high speed vessel. Especially for a planing craft having a large variation of running attitude it becomes more essential, but it can not be obtained easily because the running posture and the hydrodynamic forces including the resistance are interacted with each other. So iterative calculation to obtain the dynamic forces according to the changes in attitude is necessary, in this study, considering the calculated hydrodynamic force at the assumed draft as the additional buoyancy the corrected draft is calculated through satisfying the equilibrium between the buoyancy and the hull weight. To verify the derived method three kinds of hull forms were used with the results of model tests, R/V ATHENA and 150 tons class guide vessel for middle-speed semi-planing crafts, 28 feet fast boat for a high-speed planing boat. For all cases with several iterations the converged value of draft can be obtained, lastly the resistance and flow around hull were simulated by using VOF method.

The estimations of planing hull running attitude and resistance by using CFD and Goal Driven Optimization

  • ZHANG, Qi;KIM, Dong-Joon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.285-294
    • /
    • 2015
  • As a "kind of" mature ship form, planing hull has been widely used in military and civilian areas. Therefore, a reasonable design for planing hull becomes more and more important. For planing hull, resistance and trim are always the most important problems we are concerned with. It affects the planing hull's economic efficiency and maneuverability very seriously. Instead of the expensive towing tank experiments, the development of computer comprehensive ability allows us to previously apply computational fluid dynamics(CFD)to the ship design. In this paper, the CFD method and Goal Driven Optimization (GDO) were used in the estimations of planing hull resistance and running attitude to provide a possible method for performance computation of planing hull.

The Effect of Appendages of a Water-Jet Propelled High Speed Vessel on the Course Keeping Ability (워터젯 추진 고속선의 부가물이 침로안정성에 미치는 영향)

  • Park, Han-Sol;Kim, Dong-Jin;Lee, Sung-Kyun;Park, Jong-Yong;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2011
  • It has been often reported that a water-jet propelled high speed vessel lost the course keeping ability in seaway. In this study, model tests of a high speed vessel were performed to measure the running attitude and to check the course keeping ability. The model ship may lose the course keeping ability due to bad running attitudes such as bow drop. So model tests were carried out to improve the running attitude by changing the position of longitudinal center of gravity and using appendages at the bow and the stern of a model. The position of lateral center of pressure moved toward stern and the course keeping ability was improved by modifying the transom wedge angle.

A Study on the Sail Force Prediction Method for Hull Hydrodynamic Force Measurement of 30feet Catamaran Sailing Yacht (30ft급 쌍동형 세일링 요트의 선체 유체력 계측에 의한 세일력 추정방법에 관한 연구)

  • Jang, Ho-Yun;Park, Chung-Hwan;Kim, Hyen-Woo;Lee, Byung-Sung;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.477-486
    • /
    • 2010
  • During sailing by wind-driven thrust on the sail, a catamaran sailing yacht generates leeway and heeling. For predicting sail force, a model test was carried out according to running attitude. Through the model test, drag and side force of the real ship was predicted. A purpose of this study is to find sail force to C.E from changed attitude during running direction. By balance of hull and sail, a heeling force of designed sail is predicted. Also through heeling force and driving force, total sail force and direction from C.E are considered with changed mast including leeway and heeling.

Development of Multi-Attitude Monitoring System for Agricultural Robots (농업 로봇 용 다중 자세 모니터링 시스템 개발)

  • Kwon, Ik Hyun;Kim, Cheong Worl;Kim, Sung Deuk;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2018
  • In this paper, we have developed a multi-attitude monitoring system for running farm robots for field farming. There are many agricultural robots that can select work modules for various tasks. In order to control the stable attitude of agricultural robots connected to each other, we developed a system for monitoring the roll angle and pitch angle difference by fusing the information of the attitude monitoring system mounted on the robot mainframe and the work module. The developed attitude monitoring system showed resolution below 1 degree. In this paper, roll angle difference of 20 degrees and 60 degrees is measured with a multi - attitude monitoring system.

An Experimental Study on the Motion Response of a High-Speed Planing Craft in Regular Head Waves (정면 규칙파 중 활주형 고속선의 운동 응답에 대한 실험적 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Hwang, Seung-Hyun;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.373-381
    • /
    • 2009
  • The running attitude of a high-speed planing craft may change significantly depending on its speed in seaway. Other variables that may influence its running attitude are its weight, center of gravity, sea conditions, and so on. In this paper, planing craft model tests were carried out with respect to above variables in SNU towing tank, and vertical motion responses of a planing craft in regular head waves were analyzed. The experimental results in regular waves were compared with those in calm water, and compared with the theoretical estimations. Finally, the effects of running speeds of a planing craft on its motion amplitudes are confirmed.