• Title/Summary/Keyword: Rungekutta Method

Search Result 2, Processing Time 0.015 seconds

The Lubrication Characteristics of Rotary Compressor for Refrigeration & Air-Conditioning (Part I ; The analysis of rolling piston behavior) (냉동 공조용 로터리 콤프레서의 윤활 특성 제1보 : 롤링 피스톤의 거동해석)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system (r & a system) in modem industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. The Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction (마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구)

  • 윤영진;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF