• Title/Summary/Keyword: Run-of-River

Search Result 158, Processing Time 0.03 seconds

Assessment of an Index of Biological Integrity (IBI) using Fish Assemblages in Keum-Ho River, Korea (어류군집을 이용한 금호강의 생물보전지수 (Index of Biological Integrity, IBI) 평가)

  • 염동혁;안광국;홍영표;이성규
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.2
    • /
    • pp.215-226
    • /
    • 2000
  • We evaluated the aquatic ecosystem of Keum-Ho River through applications of the Index of Biological Integrity (IBI) using fish assemblages and Qualitative Habitat Evaluation Index (QHEI) during June-November 1999. Overall IBI values ranged from 13 to 37 with mean of 23 (n=25, Std. error= 1.16), indicating a "Poor" or "Very Poor" condition according to the criteria of Karr (1981) and U.S. EPA (1993). The values of mean IBI declined at the rate of $0.22km^{-1}$(($r^2$=0.91, p< 0.05) along the longitudinal distance from the headwaters to the down-river. Reduced IBI values at down-river (St. 4 and 5) were attributed to the decreases in riffle benthic species and the relative abundance of insectivore and increases in tolerant species, anormalies and exotic species. Spatial pattern in IBI agreed with QHEI values, which showed a linear relation ($r^2$=0.998, p< 0.001) with mean number of species. Field measurements of conductivity and pH, indicators for variation of conservative ions, showed that the river water was diluted up to 30% by summer precipitation and surface run-off from the watershed, resulting in physical and chemical instability during the monsoon. For these reasons, average IBI values during monsoon and postmonsoon decreased more than 20% compared to pre -monsoon. Before the perturbation of the system (i.e., pre-monsoon), values of QHEI were inversely correlated (r=-0.99, p< 0.0001) with realtive abundance of native omnivore and were positively correlated (r=0.87, p=0.05) with relative abundance of native carnivore. These results indicate that spatial degradation of habitat quality modified the species richness and trophic structure, producing decreased IBI values. (Biological integrity, IBI, Monsoon, Habitat, River, Korea)bitat, River, Korea)

  • PDF

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Restoration of the Stream Runoff by the Physical Deterministic Modeling and Formulation of Water Balance for the Catchment of Byungchun River in Chungcheong Province in Korea (물리 결정 모델링에 의한 충청도 병천천 유역의 하천 유출량 복원과 물 수지 수립)

  • KIM, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.37-53
    • /
    • 2008
  • This study has developed a water balance model for the catchment of Byungchun river using a BROOK90 4.4e physical deterministic water balance model with the long-term meterological data and stream run off data obtained from the basin of Byungchun river in Korea. It is intended that the validation model with calibrated model fitting parameter can build a long-term water balance plan for a period when meterological data are available but stream runoff data are not. Results of this study have satisfied the first expectation as an experiment for water balance modeling since measured stream runoff data have turned out to be very similar to simulated stream runoff data. Through the confirmation of model fitting parameters and validated simulation, water balance for the period of 1998 to 2006 has been restored. Unless the conditions of geomophology, vegetation, soil and land use change, meterological data alone can produce various hydrometeorological data related to stream runoff amount, soil water amount, and evapotranspiration. This study opens up a new horizon in restoring water balance in the past as well planning water balance in the present. The obtained results from this study are expected to be used in predicting future water balance in the wake of the changes in climate and vegetation in Korea.

Understanding Visitor's Recognition of Geosites by Analyzing Instagram Hashtags (인스타그램 해시태그(Hashtags) 분석을 통한 방문객들의 지오사이트 인식에 대한 분석)

  • Park, Min Young;Park, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • The objective of this study was two fold: firstly, we analyzed how the Geoparks have been run since the first one had been designated on December 31th, 2015. We then investigated how visitors' geographical and geological recognitions on the parks have changes. We visited geosites and investigated how well these sites accorded with the conditions for running Geoparks. In addition, scenery pictures and hashtags uploaded in Instagram between 2015 and 2016 were collected in order to analyze visitors preferences on the geosites along the, Hantan Imjingang River Geopark. Results showed that the hotspots were Bidulginang Waterall, Art Valley, and Jaein Waterfall. Compared to the ratio of geographical and geological references in 2015, the hashtags in all of these three geosites increased. The increases were as much as 3% in Bidulginang Falls, 0.6% in Art Valley, and 5% in Jaein Falls. In labelling the geographical and geological terms in Bidulginang Falls and Jaein Falls, the most frequently mentioned hashtags was "columnar joint", followed by "natural monument", "Geopark", and "basalt canyon". This study includes the study of visitors recognition which is one of the most important, but somehow neglected factor for the geopark's management.

Hydrological Drought Analysis using Copula Theory (Copula 이론을 이용한 수문학적 가뭄 분석)

  • Kwak, Jae Won;Kim, Duck Gil;Lee, Jong Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.161-168
    • /
    • 2012
  • Drought is a normal and recurrent phenomenon. But, recurring prolonged droughts have caused consequences and diverse impacts on human system. Therefore, understanding drought characteristics is indispensable element in well-prepared drought management. This study aims to investigate the hydrological droughts of Pyongchang stream and Upstream of Namhan-river in Korean peninsula. For modelling of the joint distribution of drought duration and drought severity, the copula method is used to construct the bivariate drought distribution and return period from the predetermined marginal distributions of drought duration and drought severity. As the result, the most severed drought of the Pyongchang stream and Upstream of Namhan-river occuring during period 1967 to 2007 is the 1981 and 1973. Return period for this drought derived from copula is 550 and 110 years.

The Effect of Predictive Reaeration Estimation Equation on Stream Water Quality Modeling

  • Kim, Hyung-Joong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.97-103
    • /
    • 1997
  • DO concentration in the aquatic system is important for the water quality management perspective. Water quality model uses available reaeration coefficient (K2) estimation equations in calculating DO, however, they might include inevitable uncertainty that the model output can be less reliable. In this study, the calibrated QUAL2E model for the Passaic River in New Jersey, U.S., was used to examine the effect of K2 estimation equation on the output DO concentration of the river. The model was run with six commonly used equations separately with all the other conditions remained same. The result showed that the output DO concentration profiles varied widely with different equations, and maximum difference was 4.96 mg/L for the same location which is unacceptably large. It implies that the development of reliable equation is required for proper water quality management. The unreliable model output can lead to a wrong decision in water quality management such as unnecessarily high or too low treatment of wastewater, which will cause serious effect on the community economically and socially in either case. Generating more reliable model output with slight investment to develop a site specific K$_2$ equation can improve the decision making process significantly and is highly recommended.

Inundation Simulation of Underground Space using Critical Dry Depth Scheme (임계 마름 수심기법을 이용한 지하공간 침수 모의)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.63-69
    • /
    • 2015
  • In this study, a 2D hydrodynamic model equipped with critical dry depth scheme was developed to reproduce the flow over staircase. The channel geometry of hydraulic experiment conducted by Ishigaki et al. was generated in the computational space, and the developed model was validated against flow properties such as discharge, velocity and momentum. In addition, the water surface profile and the velocity distribution evolved in flow over two layers staircases were analyzed. When the initial water depth at the upper floor was 0.3 m, the maximum velocity at lower floor was 4.2 m/s, and the maximum momentum was $1.2m^3/s^2$, and its conversion to force per unit width was 1.2 kN/m. This value was equivalent to the hydrostatic force with 50 cm water depth, and evacuation became difficult, as proposed by Ishigaki et al. For the flow over staircases connecting two layers, the maximum run-up height in flat part connecting two layers was approximately two times higher than the initial water depth in upper floor, and the rapid shock wave with sharp front and long tail was propagated.

Artificial Neural Network-based Real Time Water Temperature Prediction in the Soyang River (인공신경망 기반 실시간 소양강 수온 예측)

  • Jeong, Karpjoo;Lee, Jonghyun;Lee, Keun Young;Kim, Bomchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2084-2093
    • /
    • 2016
  • It is crucial to predict water temperature for aquatic ecosystem studies and management. In this paper, we first address challenging issues in predicting water temperature in a real time manner and propose a distributed computing model to address such issues. Then, we present an Artificial Neural Network (ANN)-based water temperature prediction model developed for the Soyang River and a cyberinfrastructure system called WT-Agabus to run such prediction models in an automated and real time manner. The ANN model is designed to use only weather forecast data (air temperature and rainfall) that can be obtained by invoking the weather forecasting system at Korea Meteorological Administration (KMA) and therefore can facilitate the automated and real time water temperature prediction. This paper also demonstrates how easily and efficiently the real time prediction can be implemented with the WT-Agabus prototype system.

Comparisons Among the Fishes of Genus Liobagrus in Korea by Their Morphology and Electrophoretic Patterns of Proteins (形態 및 蛋白質 電氣泳動像에 依한 韓國産 퉁가리屬 魚類의 比較)

  • 손영목;최의열;안태인
    • The Korean Journal of Zoology
    • /
    • v.27 no.1
    • /
    • pp.25-34
    • /
    • 1984
  • Two species of fishes of Genus Liobagrus that had been collected from three separate river systems in Korea were compared by their morphology and gel electrophoretic patterns of water soluble proteins. In morphology L. andersoni from Han River was distinctly different from L. mediadiposalis collected from both Gum River and Nagdong River. But L. andersoni collected from Gum River not only showed partial similarity for both groups of fishes above in their classifying characteristics but also had a unique ratio of body width/standard length. Comparable similarity and difference among the three groups were also noted in their protein patterns of SDS polyacrylamide gel electrophoresis of various tissues. The difference was clearer and more distinct in the gel run with muscle proteins. A couple of more distinctly different low molecular polypeptides were detected by two dimensional gel electrophoresis. Since the protein patterns shown in this study are not only agreeable with the morphological results but also provide detailed comparisons, fishes of Liobagrus from various water sources can be classified reliably by gel electrophoresis. On the bases of tghe findings above, L. andersoni like fishes collected from Gum River should no longer be classified as L. andersoni. Before naming them as an independent species, the possibility of natural hybrid between the two defined species, or of a varient of L. andersoni by geograpic isolation should be tested.

  • PDF

Distribution of Phthalate Compounds in Gwangyang Bay and Seomjin River Estuary (광양만 및 섬진강 하구에서의 프탈레이트 화합물의 분포 특성)

  • 김민선;이동호;심원준;오재룡
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.47-53
    • /
    • 2004
  • Among the phthalic esters, di-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), which are categorized endocrine disrupting chemicals, account toy up to 80% of the world production. Nine phthalic esters were quantitatively determined in water and in sediment samples from Gawngyang Bay and Seomjin River estuary. This might be the first report in contamination of phthalates in the marine environment of Korea. DBP and DEHP were detected with the high concentration and high frequency, while the other phthnlic compounds were below the detection limits. The aveyage concentyations of DBP and DEBP in sediment from Gawngyang Bay were 33.8 ng g$\^$-1/ and 67.4 ng g$\^$-1/ on a dry weight basis, respectively. The concentrations in surface watey from Seomjin River estuary were in the range of 62.7∼333.8 ng L$\^$-1/ for DBP and 25.6 ng L$\^$-/∼116.1 ng L$\^$-1/ for DBHP. In sediments from Seomjin River estuary, DBP ranged 9.1∼149.3 ng g$\^$-1/, and DEHP 46.3∼156.3 ng g$\^$-1/. Phthalic esters concentrations found in Seomjin River estuary were much less than those in other rivers in Korea. Distribution pattern of DBP and DEHP concentrations in Seonliin River estuary indicates that both compounds aye introduced to Gwangyang Bay through run-off.