• Title/Summary/Keyword: Run Out

Search Result 979, Processing Time 0.028 seconds

A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness (주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

An Analysis of the Cutting Force for Peripheral End-milling Considering Run-out (런아웃을 고려한 측면 엔드밀 가공의 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • The cutting force for peripheral end-milling considering run-out property was estimated and its result was compared with that of measured one. An experimental coefficient modelling was used for the formulation of theoretical end-milling force by considering the specific cutting force coefficient. Also, the specific cutting force, that is the multiplication of specific cutting force coefficient and uncut chip thickness, was used for the prediction of end-milling force. The end-milling force mechanics with run-out was presented for the estimation of theoretical force in peripheral end-milling by considering the geometric shape of the workpiece part. As a result, the estimated end-milling force shows a good consistency with the measured one. And it can be used for the prediction of force history in end-milling with run-out which incurs different start and exit immersion angle in entering and exiting condition.

Study on the High-Speed Machining Using High Speed Tooling System in Machining Center (범용 머시닝센터에서 주축증속기를 이용한 고속절삭에 관한 연구 -주축의 회전정도(Run-Out)가 가공특성에 미치는 영향 -)

  • 김경균;이용철;이득우;김정석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.41-45
    • /
    • 1996
  • In order to realize the high-speed machining, the relative technologies for high speed machining tool and high speed machining are required now, The machining accuracy is influenced on the disturbance by the synchronized working conditions(cutting force, spindle Run-out, thermal deformation etc.) In this paper, the effect of spindle Run-out for the high speed machining is investigated. The results show that the spindle Run-out has a great influence on the machining accuracy in high speed machining.

  • PDF

Simulation of Run-out caused by Imperfection of Ball Bearing for High-speed Spindle Units

  • Zverev Igor Aexeevich;Eun In-Ung;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.3-7
    • /
    • 2006
  • For the purpose to improve and to automate designing of high-speed spindle units (SU's), we have developed the mathematical models and software to estimate SU performance characteristics, including the run-out of spindles running on ball bearings. In order to understand better the mechanics of high-speed SUs, the dynamic interaction of ball bearings and SU, and the influence of the bearing imperfections and SU's operational conditions on the run-out, we have carried out computer simulation and experimental studies. Through the study of SU's, we have found out that run-out of SU can vary drastically with variation of rpm. The influences of rotation speed and of accuracy parameters of bearings on the SU accuracy have the greatest importance. The influence of bearing preload has a secondary importance. Comparison of the results of these studies has demonstrated adequacy of the models and software developed to the real SU's.

Brake Squeal Noise Due to Disk Misalignment (디스크 정렬불량에 기인한 브레이크 스퀼소음)

  • Park, Ju-Pyo;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

Brake Squeal Noise Due to Disk Run-out (디스크 런아웃에 기인한 브레이크 스퀼소음)

  • Lim, Jae-Hoon;Cho, Sung-Jin;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.595-600
    • /
    • 2004
  • This paper deals with a cause analysis of a squeal noise in a brake system. It has been proved that the squeal noise is influenced by the angular misalignment of a disk, disk run-out, with the previously experimental study. In this study, a cause of the noise is examined by using FE analysis program(SAMCEF) and numerical analyses with a derived analytical equation of the disk based on the experimental results. The FE analyses and numerical results show that the squeal noise is due to the disk run-out as the experimental results and the frequency component of the noise equals to that of a disk's bending mode arising from the Hopf bifurcation.

  • PDF

Brake Judder due to Disc Run-out (디스크 런아웃에 기인한 브레이크의 저더 진동)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.223-228
    • /
    • 2006
  • Brake judder of an automotive vehicle is defined as an abnormal vibration of low frequency during braking. Under the assumption that judder occurs due to disc run-out and is a resonance phenomenon with a specific parts of the automobile, computational simulations using SAMCEF software were performed in this paper. The results show that the stabilizer of the car is a possible part which makes the judder vibration due to resonance. And initial braking velocity, the magnitude of run-out, and the friction coefficient between disk and pad are the influential factors to the brake judder.

  • PDF

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

The Effects of Tool Setting Errors on Cutting Tool Vibrations (공구 진동에 대한 공구 셋팅 오차의 영향)

  • Shin Y.J.;Park K.T.;Kang B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.199-202
    • /
    • 2005
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of parts created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool setting errors and surface roughness end tilted mills were used to cut aluminum samples. The results indicate that tool setting errors have significant effects on surface roughness and cutting forces.

  • PDF

A study on the design, manufacturing and performance evaluation of air bearing spindle for PCB drilling (PCB드릴링용 공기 베어링 스핀들의 설계 제작 및 성능평가에 관한 연구)

  • Kim Sang-Jin;Bae Myung-Il;Kim Hyeung-Chul;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.29-36
    • /
    • 2006
  • Micro drilling by high-speed air bearing spindle is very useful manufacturing technology in electronic industry For the design of high speed air bearing spindle, there are considered stability of air bearing spindle, allowable load of air bearing, run out and tooling system design for micro drill's attach and remove. According to suggested details, we designed and manufactured high-speed air bearing spindle and carried out performance estimation such as run out, temperature change in running air bearing spindle, stiffness, chucking torque. Results are follows; Run out was measured under $5{\mu}m$ at air bearing spindle revolution $20,000\sim125,000rpm$. High speed air bearing spindle's temperature rose about $20^{\circ}C$ after 5 minutes from running and then was fixed. Allowable thrust load of spindle was 17kgf. Chucking torque of collet was 15kgfcm.