• Title/Summary/Keyword: Rumor Detection

Search Result 6, Processing Time 0.022 seconds

RDNN: Rumor Detection Neural Network for Veracity Analysis in Social Media Text

  • SuthanthiraDevi, P;Karthika, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3868-3888
    • /
    • 2022
  • A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.

Initial Small Data Reveal Rumor Traits via Recurrent Neural Networks (초기 소량 데이터와 RNN을 활용한 루머 전파 추적 기법)

  • Kwon, Sejeong;Cha, Meeyoung
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.680-685
    • /
    • 2017
  • The emergence of online media and their data has enabled data-driven methods to solve challenging and complex tasks such as rumor classification problems. Recently, deep learning based models have been shown as one of the fastest and the most accurate algorithms to solve such problems. These new models, however, either rely on complete data or several days-worth of data, limiting their applicability in real time. In this study, we go beyond this limit and test the possibility of super early rumor detection via recurrent neural networks (RNNs). Our model takes in social media streams as time series input, along with basic meta-information about the rumongers including the follower count and the psycholinguistic traits of rumor content itself. Based on analyzing millions of social media posts on 498 real rumors and 494 non-rumor events, our RNN-based model detected rumors with only 30 initial posts (i.e., within a few hours of rumor circulation) with remarkable F1 score of 0.74. This finding widens the scope of new possibilities for building a fast and efficient rumor detection system.

Estimating the Rumor Source by Rumor Centrality Based Query in Networks (네트워크에서 루머 중심성 기반 질의를 통한 루머의 근원 추정)

  • Choi, Jaeyoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.7
    • /
    • pp.275-288
    • /
    • 2019
  • In this paper, we consider a rumor source inference problem when sufficiently many nodes heard the rumor in the network. This is an important problem because information spread in networks is fast in many real-world phenomena such as diffusion of a new technology, computer virus/spam infection in the internet, and tweeting and retweeting of popular topics and some of this information is harmful to other nodes. This problem has been much studied, where it has been shown that the detection probability cannot be beyond 31% even for regular trees if the number of infected nodes is sufficiently large. Motivated by this, we study the impact of query that is asking some additional question to the candidate nodes of the source and propose budget assignment algorithms of a query when the network administrator has a finite budget. We perform various simulations for the proposed method and obtain the detection probability that outperforms to the existing prior works.

Deep Learning Based Rumor Detection for Arabic Micro-Text

  • Alharbi, Shada;Alyoubi, Khaled;Alotaibi, Fahd
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.73-80
    • /
    • 2021
  • Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.

Modeling and Evaluating Information Diffusion for Spam Detection in Micro-blogging Networks

  • Chen, Kan;Zhu, Peidong;Chen, Liang;Xiong, Yueshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3005-3027
    • /
    • 2015
  • Spam has become one of the top threats of micro-blogging networks as the representations of rumor spreading, advertisement abusing and malware distribution. With the increasing popularity of micro-blogging, the problems will exacerbate. Prior detection tools are either designed for specific types of spams or not robust enough. Spammers may escape easily from being detected by adjusting their behaviors. In this paper, we present a novel model to quantitatively evaluate information diffusion in micro-blogging networks. Under this model, we found that spam posts differ wildly from the non-spam ones. First, the propagations of non-spam posts mostly result from their followers, but those of spam posts are mainly from strangers. Second, the non-spam posts relatively last longer than the spam posts. Besides, the non-spam posts always get their first reposts/comments much sooner than the spam posts. With the features defined in our model, we propose an RBF-based approach to detect spams. Different from the previous works, in which the features are extracted from individual profiles or contents, the diffusion features are not determined by any single user but the crowd. Thus, our method is more robust because any single user's behavior changes will not affect the effectiveness. Besides, although the spams vary in types and forms, they're propagated in the same way, so our method is effective for all types of spams. With the real data crawled from the leading micro-blogging services of China, we are able to evaluate the effectiveness of our model. The experiment results show that our model can achieve high accuracy both in precision and recall.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.