• Title/Summary/Keyword: Ruminal Ammonia

Search Result 206, Processing Time 0.172 seconds

The Effect of Vegetable Sources Supplementation on In vitro Ruminal Methane Gas Production (식물원료 첨가가 In vitro 반추위 메탄가스 발생에 미치는 영향)

  • Yang, Seung-Hak;Lee, Se-Young;Cho, Sung-Back;Park, Kyu-Hyun;Park, Joong-Kook;Choi, Dong-Yoon;Yoo, Yong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • The researchers have tried to reduce ruminal methane gas ($CH_4$) and to convert it into beneficial nutrient for several decades. This study was conducted to screen the methane-reducing vegetables among lettuce, hot pepper, spring onion, onion, turmeric, sesame leaf, garlic, radish sprout, leek and ginger nutritiously on the in vitro ruminal fermentation. The heat-treated vegetables at the 10% of substrate (timothy) were used to reduce methane production on the in vitro anaerobic experiment of 0, 6, 12, 24 and 48 h incubation time. Total gas production, pH, ammonia, $H_2$, $CO_2$, $CH_4$, and volatile fatty acid (VFA) were measured as indicators of in vitro fermentation product containing methane gas. All treatments except garlic showed a tendency to increase in total gas production. The result of ammonia showed that garlic and hot pepper affected rumen bacteria concerned protein metabolism and that lettuce and spring onion increased ammonia production. Garlic decreased $CH_4$ production in inverse proportion to $H_2$. Lettuce, spring onion, onion, garlic, radish sprout, leek and ginger increased propionate of VFA. Garlic balanced the ruminal fermentation in the pH, $H_2$, $CH_4$, acetate and propionate. This results showed that methane production at in vitro study was inhibited by heat-treated garlic supplementation. In conclusion, this study suggests that ruminal fermentation covering methane production might be controled by proper vegetables.

Effects of Whole Crop Corn Ensiled With Cage Layer Manure on Nutritional Quality and Microbial Protein Synthesis in Sheep

  • Kim, S.C.;Kim, J.H.;Kim, C.H.;Lee, J.C.;Ko, Y.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1548-1553
    • /
    • 2000
  • An experiment was conducted to study the nutritional quality of whole crop corn silage ensiled with cage layer manure in sheep. Treatments were designed as a $3{\times}3$ Latin square with 16-day periods. Sheep were allotted in one of three diet-treatments, which were whole crop corn silage (CS), whole crop corn+30% cage layer manure (CLM) silage (based on DM; MS) and rice straw+concentrate (SC) mixed at 8:2 ratio (on DM basis). Silage ensiled with CLM significantly increased (p<0.05) digestibilities of crude protein, NDF and ADF, TDN over the other treatments. Ruminal pH in sheep fed SC was significantly (p<0.05) higher than that of the other diets at 0.5, 1, 2, 4 and 8 h after feeding. Ruminal ammonia nitrogen concentration of the MS treatment was significantly (p<0.05) higher than that of the other treatments at 0, 1, 2 h after feeding. The MS treatment highly increased (p<0.05) feed intake, digestibility of organic matter and crude protein, nitrogen intake and retained nitrogen. The MS treatment highly increased (p<0.05) purine derivative (PD) excretion leading to higher microbial protein synthesis.

Natural Products as Manipulators of Rumen Fermentation

  • Wallace, R. John;McEwan, Neil R.;McIntosh, Freda M.;Teferedegne, Belete;Newbold, C. James
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1458-1468
    • /
    • 2002
  • There is increasing interest in exploiting natural products as feed additives to solve problems in animal nutrition and livestock production. Essential oils and saponins are two types of plant secondary compounds that hold promise as natural feed additives for ruminants. This paper describes recent advances in research into these additives. The research has generally concentrated on protein metabolism. Dietary essential oils caused rates of NH$_3$ production from amino acids in ruminal fluid taken from sheep and cattle receiving the oils to decrease, yet proteinase and peptidase activities were unchanged. Hyper-ammonia-producing (HAP) bacteria were the most sensitive of ruminal bacteria to essential oils in pure culture. Essential oils also slowed colonisation and digestion of some feedstuffs. Ruminobacter amylophilus may be a key organism in mediating these effects. Saponin-containing plants and their extracts appear to be useful as a means of suppressing the bacteriolytic activity of rumen ciliate protozoa and thereby enhancing total microbial protein flow from the rumen. The effects of some saponins seems to be transient, which may stem from the hydrolysis of saponins to their corresponding sapogenin aglycones, which are much less toxic to protozoa. Saponins also have selective antibacterial effects which may prove useful in, for example, controlling starch digestion. These studies illustrate that plant secondary compounds, of which essential oils and saponins comprise a small proportion, have great potential as 'natural' manipulators of rumen fermentation, to the potential benefit of the farmer and the environment.

Effects of Formalin Treated Soy Bean as a Source of Rumen Undegradable Protein on Rumen Functions of Non-lactating Dairy Cows on Concentrate Based-diets

  • Kanjanapruthipong, J.;Vajrabukka, C.;Sindhuvanich, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1439-1444
    • /
    • 2002
  • An objective of this study was to determine the effects of increasing contents of rumen undegradable protein (RUP) from formalin treated soy bean (FSBM) on rumen functions. Four rumen canulated non-lactating cows were randomly allocated to total mixed rations (TMR) containing different proportions of soy bean meal (SBM) and FSBM. Of rumen fermentation characteristics, concentrations of ruminal fluid ammonia and molar proportions of isoacids decreased with increasing contents of RUP in diets (p<0.01). The animals on TMR containing only SBM gained less weight and had smaller rumen volume than those on TMR containing RUP from FSBM (p<0.05). Organic matter and neutral detergent fiber digestibility in sacco were not different (p>0.05). The density of protozoa particularly small Entodinium sp. in ruminal fluid was higher in animal fed TMR containing SBM:FSBM (34:66) and FSBM than those fed TMR containing SBM:FSBM (66:34) and SBM (p<0.01). Total viable count, and net microbial protein synthesis as indicated by purine derivatives in urine increased with increasing contents of RUP from FSBM (p<0.01). It can be concluded that a reduction in net microbial protein synthesis in the rumen with increasing contents of RUP in the diet can be due to the reduction of preformed protein available for microbial growth as well as an increased turnover rate of microbial cells by predatory activity of protozoa.

Effect of Feed Additives in Growing Lambs Fed Diets Containing Wet Brewers Grains

  • Aguilera-Soto, J.I.;Ramirez, R.G.;Arechiga, C.F.;Mendez-Llorente, F.;Lopez-Carlos, M.A.;Silva-Ramos, J.M.;Rincon-Delgado, R.M.;Duran-Roldan, F.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1425-1434
    • /
    • 2008
  • The study was conducted to evaluate and compare the effects of feed additives on ruminal fermentation, nutrient digestibility and performance of lambs fed diets containing 60% wet brewers grains (WBG). In Experiment 1, two simultaneous trials were conducted. Fifty intact ($20.2{\pm}0.8kg\;BW$) lambs were used in a feedlot trial and 10 (rumen cannulated; $32{\pm}1kg\;BW$) in a digestion trial. The pH, volatile fatty acids (VFA) and ammonia-N in lambs were also estimated. Lambs were randomly assigned to one of five diets: i) without additives (Con), ii) with 1% bicarbonate (Bic), iii) with 1% bentonite (Ben), iv) with 33 mg/kg monensin (Mon) and v) with 200 mg/kg fibrolityc enzymes (Enz). In Experiment 2, 120 RambouilletPelibuey intact male lambs ($19.5{\pm}1.5kg\;BW$) were used in a feedlot trial and randomly assigned to four diets: i) without additives (control), ii) with 1% Bic, iii) with 33 mg/kg Mon and iv) with 1% Bic and 33 mg/kg Mon. In Experiment 1, lambs fed diets containing Bic or Mon had significantly higher final weight, DMI, ADG than other lambs. However, apparent DM, OM, CP, NDF and ADF digestibilities and ruminal individual VFA content were similar (p>0.05) among treatments. Conversely, treatmentcollection period interaction was significant for ruminal pH and NH3. In Experiment 2, lambs fed diets containing a Bic and Mon combination had significantly higher final weight, DMI and ADG. It is concluded lambs fed Bic or Mon or Bic and Mon combination had better performance characteristics than lambs on Ben or Enz.

Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats

  • Morsy, T.A.;Kholif, S.M.;Kholif, A.E.;Matloup, O.H.;Salem, A.Z.M.;Elella, A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1116-1122
    • /
    • 2015
  • This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.

pH Affects the In vitro Formation of cis-9, trans-11 CLA and trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1743-1748
    • /
    • 2003
  • The effect of pH on the fermentation characteristics and the formation of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-11 octadecenoic acid by mixed ruminal bacteria was examined in vitro when incubated with linseed or rapeseed. Concentrate (1%, w/v) with ground linseed (0.6%, w/v) or rapeseed (0.5%, w/v) was added to 600 ml mixed solution of strained rumen fluid with artificial saliva (1:1, v/v), and was incubated anaerobically for 12 h at $39^{\circ}C$. The pH of culture solution was maintained at level close to 4.5, 5.3, 6.1 and 6.9 with 30% $H_2SO_4$ or 30% NaOH solution. pH increment resulted in increases of ammonia and total volatile fatty acid (VFA) concentration in culture solutions containing both oilseeds. Fermentation did not proceeded at pH 4.5. Molar proportion of acetate decreased but that of propionate increased as pH increased when incubated with oilseeds. While the hydrogenating process was very slow at the pH range of 4.5 to 5.3, rapid hydrogenation was found from the culture solutions of pH 6.1 and 6.9 when incubated with linseed or rapeseed. As pH in culture solution of linseed or rapeseed increases proportions of oleic acid (cis-9 $C_{18:1}$) and trans-11 octadecenoic acid increased but those of linoleic acid and linolenic acid decreased. The CLA proportion increased with pH in culture solution containing rapeseed but CLA was mostly not detected from the incubation of linseed.

Effect of Concentrate Level on the Formation of Conjugated Linoleic Acid and Trans-octadecenoic Acid by Ruminal Bacteria when Incubated with Oilseeds In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.687-694
    • /
    • 2002
  • An in vitro study was conducted to examine the effect of addition level of concentrate on fermentation characteristics and long-chain unsaturated fatty acids composition, especially conjugated linoleic acid (CLA) and trans-octadecenoic acid (t-FA) by mixed ruminal bacteria when incubated with linseed or rapeseed. Four levels (0.83, 1.25, 1.67 and 2.08%, w/v) of concentrate and ground oilseeds (linseed or rapeseed; 0.83%, w/v) were added to mixed solution of strained rumen fluid with artificial saliva (1:1, v/v) in the glass jar with a glass lid equipped with stirrer, and was incubated anaerobically for 24 h at $39^{\circ}C$. Addition level of concentrate slightly reflect on pH and ammonia concentration of the culture solution at the various incubation times when incubated with both linseed and rapeseed. Total VFA concentration slightly increased with incubation times and concentrate levels for incubations with oilseeds. While CLA composition had a clearly increasing trend with incubation time when incubated with linseed, percent CLA was relatively stable when incubated with rapeseed. Percent CLA, however, had a clearly decreasing trend with concentrate level throughout incubation times with significances at 3 h incubations when incubated with linseed (p<0.038) and rapeseed (p<0.0009). The differences in compositions of t-FA were relatively small among concentrate levels for both incubations with linseed and rapeseed. The ratios of t-FA to CLA were lower for linseed with increased proportion of CLA than for rapeseed.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

Treated Extruded Soybean Meal as a Source of Fat and Protein for Dairy Cows

  • Ure, A.L.;Dhiman, T.R.;Stern, M.D.;Olson, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.980-989
    • /
    • 2005
  • The influence of treated, extruded, partially expelled soybean meals as undegradable protein and bypass fat sources on lactation performance and ruminal fermentation of dairy cows was studied. Experiment 1: nine cows were used in a replicated 3${\times}$3 Latin square design with each period being 3 wk in duration. Cows were fed 440 g/kg forage and 560 g/kg grain diet with one of three extruded soybean meals fed at 110 g/kg of the diet. The 3 soybean meals were 1) twice-extruded soybean meal (ESM; as a control); 2) lignosulfonate-treated, twice-extruded soybean meal (LSM); and 3) calcium oxide plus lignosulfonate-treated, twice extruded soybean meal (CLSM). Experiment 2: 3 ruminally cannulated cows were used in a 3${\times}$3 Latin square to study the treatment influence on ruminal fermentation characteristics. Feeding treated soybean meal to cows in LSM and CLSM treatments did not improve feed intake, milk yield, or milk composition except that cows fed the LSM and CLSM treatments produced less milk protein compared with the ESM treatment. The proportion of $C_{18:2}$ was greater in milk fat of cows fed CLSM compared with that of cows fed the ESM or LSM treatments. Ruminal pH, ammonia, and total volatile fatty acids were not affected by treatment. An increased proportion of $C_{18:2}$ in milk fat suggests that there is a potential use of calcium salts of fatty acids in protecting the lipid portion of extruded soybean meal and further research is needed to explore this potential with full-fat extruded soybeans not with extruded and partially oil expelled soybeans.