• Title/Summary/Keyword: Ruminal Ammonia

Search Result 206, Processing Time 0.022 seconds

Microbiome-metabolomics analysis of the effects of decreasing dietary crude protein content on goat rumen mictobiota and metabolites

  • Zhu, Wen;Liu, Tianwei;Deng, Jian;Wei, Cong Cong;Zhang, Zi Jun;Wang, Di Ming;Chen, Xing Yong
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1535-1544
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of decreasing dietary crude protein content on rumen fermentation, mictobiota, and metabolites in goats. Methods: In an 84-day feeding trial, a total of twelve male Anhui white goat kids with initial body weight 15.9±1.13 kg were selected and randomly classified into two groups, feeding a normal crude protein diet (14.8% CP, NCP) or a low crude protein diet (12.0% CP, LCP). At the end of the experimental trial (on day 84), six animals were randomly selected from each group and were slaughtered to collect rumen fluid samples for the analysis of rumen fermentation parameters, microbiome, and metabolome. Results: The concentrations of ammonia-nitrogen, total volatile fatty acid, acetate, and propionate were decreased (p<0.05) in the LCP group in comparison with those in the NCP group. The abundances of genera Prevotella, Campylobacter, Synergistetes, and TG5, which were associated with nitrogen metabolism, were lower (p<0.05) in the LCP group compared with those in the NCP group. The levels of 78 metabolites (74 decreased, 4 increased) in the rumen fluid were altered (p<0.05) by the treatment. Most of the ruminal metabolites that showed decreased levels in the LCP group were substrates for microbial protein synthesis. Metabolic pathway analysis showed that vitamin B6 metabolism was significantly different (p<0.05) in rumen fluid between the two treatments. Conclusion: Decreased dietary protein level inhibited rumen fermentation through microbiome and metabolome shifts in goat kids. These results enhance our understanding of ruminal bacteria and metabolites of goat fed a low protein diet.

Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

  • Wanapat, Metha;Pilajun, R.;Polyorach, S.;Cherdthong, A.;Khejornsart, P.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.952-960
    • /
    • 2013
  • The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and CC+rice bran at a ratio 3:1 (CR3:1), and factor B was level of cottonseed meal (CM); 109 g CP/kg (LCM) and 328 g CP/kg (HCM) in isonitrogenous diets (490 g CP/kg). Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05). Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p<0.05). Buffalo fed with HCM had a lower roughage intake, nutrient intake, population of total viable and cellulolytic bacteria and microbial nitrogen supply than the LCM fed group (p<0.05). However, nutrient digestibility, ruminal pH, ammonia concentration, population of protozoa and fungi, and efficiency of microbial protein synthesis were not affected by cottonseed meal levels (p>0.05). Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

Interpretation of Protein Feed Degradation Pattern in Ruminant Using an Omasal Digesta Sampling Technique (제 3위 소화액 채취기법을 이용한 반추위 단백질 사료 분해 패턴 측정법의 고찰)

  • 최창원;백경훈;강수원;이병석;오영균;김경훈
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.541-554
    • /
    • 2006
  • Present review is to introduce an omasal sampling technique in rumen proteolysis and to consider some information on the omasal sampling technique with particular emphasis on methodological aspects. Use of the omasal sampling technique provides a new opportunity for accurate estimation of rumen metabolism with overcoming limitations of previous in vivo, in vitro and/or in situ methods. The potential advantages of the present technique compared with post-ruminal sampling techniques include following points; 1) only rumen cannulated animals are required, 2) less endogenous nitrogen (N) is contaminated in omasal digesta and 3) omasal digesta are devoid of exposure to acid peptide hydrolysis occurring in the abomasum. Estimates of soluble non-ammonia N (SNAN) in omasal digesta indicate that the assumptions underlying the in situ method that rapidly degradable N fraction can be degraded at an infinite rate and only insoluble dietary N escapes the rumen may be not valid. Quatitatively higher peptide concentration rather than free amino acid and soluble protein in escapable SNAN suggests that hydrolysis of peptide to amino acid may be the rate-limiting step in rumen proteolysis.

Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Il Dong;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.71-79
    • /
    • 2018
  • Objective: Gelidium amansii (Lamouroux) is a red alga belonging to the family Gelidaceae and is commonly found in the shallow coasts of many East Asian countries, including Korea, China, and Japan. G. amansii has traditionally been utilized as an edible alga, and has various biological activities. The objective of this study was to determine whether dietary supplementation of G. amansii could be useful for improving ruminal fermentation. Methods: As assessed by in vitro fermentation parameters such as pH, total gas, volatile fatty acid (VFA) production, gas profile (methane, carbon dioxide, hydrogen, and ammonia), and microbial growth rate was compared to a basal diet with timothy hay. Cannulated Holstein cows were used as rumen fluid donors and 15 mL rumen fluid: buffer (1:2) was incubated for up to 72 h with four treatments with three replicates. The treatments were: control (timothy only), basal diet with 1% G. amansii extract, basal diet with 3% G. amansii extract, and basal diet with 5% G. amansii extract. Results: Overall, the results of our study indicate that G. amansii supplementation is potentially useful for improving ruminant growth performance, via increased total gas and VFA production, but does come with some undesirable effects, such as increasing pH, ammonia concentration, and methane production. In particular, real-time polymerase chain reaction indicated that the methanogenic archaea and Fibrobacter succinogenes populations were significantly reduced, while the Ruminococcus flavefaciens populations were significantly increased at 24 h, when supplemented with G. amansii extracts as compared with controls. Conclusion: More research is required to elucidate what G. amansii supplementation can do to improve growth performance, and its effect on methane production in ruminants.

Effects of Mustard Seeds and Powder on In vitro Ruminal Fermentation Characteristics and Methane Production (겨자종자와 겨자분의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Lee, Kang Yeon;Kim, Kyoung Hoon;Baek, Youl Chang;Ok, Ji Un;Seol, Yong Joo;Han, Ki Jun;Park, Keun Kyu;Ryu, Ho Tae;Lee, Sang Suk;Jeon, Che Ok;Oh, Young Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • The purpose of this study was to investigate the effects of mustard, which contains allyl isothiocyanate, on ruminal fermentation and methane emission in vitro. To this end, diluted ruminal fluid(30ml) was incubated anaerobically at $39^{\circ}C$ or 6, 12, and 24 h with or without seeds or powdered mustard. Either mustard seed or powdered mustard was weighed and serially (0, 3.33, 5.00, 6.67, and 8.33 g/L) mixed with ruminal fluid. Ammonia-N was increased (P < 0.05) by mustard treatment in a dose dependent manner. Regardless of concentration or form, mustard increased (P < 0.05) total VFA content but decreased (P < 0.01) pH compared to control group. Molar proportion of acetate (A) was decreased (P < 0.05) whereas propionate (P) was increased (P < 0.05) by mustard treatment, thereby A:P ratio was decreased (P < 0.05) compared to control group. Total gas production was increased (P < 0.01) in a linear manner by mustard treatment compared to control group. There was no effect of mustard powder, except 8.33 g/L level at 6 h, on methane emission. However, at 24 h, methane emission was reduced (P < 0.05) by 4.77% and 11.54% with 6.67 g/L and 8.33 g/L of mustard seeds supplementation, respectively. Altogether, these results suggest that mustard seeds containing allyl isothiocyanate may reduce methane production without disturbing ruminal fermentation.

Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

  • Gunun, P.;Wanapat, M.;Gunun, N.;Cherdthong, A.;Sirilaophaisan, S.;Kaewwongsa, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1111-1119
    • /
    • 2016
  • Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weight (BW) $20{\pm}2kg$ were randomly assigned to a $4{\times}4$ Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen ($NH_3$-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane ($CH_4$) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis.

EFFECTS OF ACTIVATED CARBON ON GROWTH, RUMINAL CHARACTERISTICS, BLOOD PROFILES AND FEED DIGESTIBILITY IN SHEEP

  • Garillo, E.P.;Pradhan, R.;Tobioka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 1995
  • This study was carried out to investigate the effects of activated carbon (AC) on growth, ruminal charateristics, blood profiles and feed digestibility in sheep, using roughage-based or concentrate-based diets. Twelve Suffolk breed of sheep of similar age and weight were distributed into 4 groups in a $2{\times}2$ factorial design. Two groups were fed a roughage-based diet with (R + AC) and without AC (R - AC), while the other two were fed a concentrate-based diet with (C + AC) and without AC (C - AC), respectively. The addition of 0.3% AC was based on dry matter of feed offered to animals. The incorporation of AC in roughage and concentrate based diets had no marked effects on feed intake, daily gain and feed conversion of the animals within experimental diets. The results obtained might be due to the low level of AC added in the diet. The animal on both concentrate-based diets were higher than the roughage-based diets in terms of daily gain and feed conversion ratio. However, it was observed that the animals provided with AC in the concentrate-based diet did not suffer from diarrhea and easily adjusted to high concentrate feeding. Further, the pH value for all diets before feeding was noted to be similar. After feeding, however, pH was shown to be higher in R + AC (p < 0.05) than in C + AC diet. Rumen protozoa number was decreased after feeding for both + AC diets, but in C - AC diet it was higher than in the roughage-based diets. For ammonia-nitrogen, C - AC was found to be higher than C + AC diet and the roughage-based diets before feeding. Total volatile fatty acid concentration, propionate and valerate molar ratios for both diets and time of collection were not affected. However, acetate, butyrate and valerate molar ratios were observed to be affected by diets and time of collections. The diets with AC increased (p < 0.05) before feeding for acetate molar ratio, but not different within diet, however, the roughage diets were found to be higher (p < 0.05) in acetate than the concentrate diet. In the blood parameters, the glutamic pyruvic transaminase (GPT), red and white blood cell (RBC, WBC) counts and packed cell volume (PCV) did not differ within and among the diets. Likewise, the WBC differential count in both diets with either - AC or + AC were similar in trend. However, lymphocyte count was noted to be increased in R + AC than the R - AC diet. The addition of AC in both diets did not affect nutrient digestibilities within diets.

Effects of Supplementing Brown Seaweed By-products in the Diet of Holstein Cows during Transition on Ruminal Fermentation, Growth Performance and Endocrine Responses

  • Hong, Z.S.;Kim, E.J.;Jin, Y.C.;Lee, J.S.;Choi, Y.J.;Lee, H.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1296-1302
    • /
    • 2015
  • This study was conducted to examine the effects of supplementing brown seaweed by-products (BSB) in the diet of ruminants on ruminal fermentation characteristics, growth performance, endocrine response, and milk production in Holstein cows. In Experiment 1, the effects of different levels (0%, 2%, and 4% of basal diet as Control, 2% BSB, 4% BSB, respectively) of BSB were evaluated at 3, 6, 9, 12, and 24 h in vitro batch culture rumen fermentation. The pH tended to be higher for the higher level of BSB supplementation, with the pH at 12 h being significantly higher (p<0.05) than that of the control. The concentration of ammonia nitrogen was lower at 3, 9, 12, and 24 h incubation (p<0.05) compared with the control, and tended to be low at other incubation times. Volatile fatty acid concentration appeared to be minimally changed while lower values were observed with 4% BSB treatment at 24 h (p<0.05). In Experiment 2, effects of levels (0%, 2%, and 4%) of BSB on growth performance, endocrine responses and milk production were studied with Holstein dairy cows during transition. Dry matter intake, daily gain and feed efficiency were not affected by BSB supplementation. The concentration of plasma estrogen for the control, 2% BSB and 4% BSB after three months of pregnancy were 55.7, 94.1, and 72.3 pg/mL, respectively (p = 0.08). Although the differences of progesterone levels between BSB treatments and the control were minimal, the concentration in 4% BSB treatment increased to 157.7% compared with the initial level of the study. Triiodothyronine and thyroxine levels were also higher after both three months and eight months of pregnancy than the initial level at the beginning of the study. In addition, BSB treatments during one month after delivery did not affect daily milk yield and composition. In conclusion, the present results indicate that supplementation of BSB did not compromise ruminal fermentation, and animal performance at lower levels and hence may have potential to be used as a safe feed ingredient in dairy cows.

Effects of different ratios and storage periods of liquid brewer's yeast mixed with cassava pulp on chemical composition, fermentation quality and in vitro ruminal fermentation

  • Kamphayae, Sukanya;Kumagai, Hajime;Angthong, Wanna;Narmseelee, Ramphrai;Bureenok, Smerjai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.470-478
    • /
    • 2017
  • Objective: This study aims to evaluate the chemical composition, fermentation quality and in vitro ruminal fermentation of various ratios and storage periods of liquid brewer's yeast (LBY) mixed with cassava pulp (CVP). Methods: Four mixtures of fresh LBY and CVP were made (LBY0, LBY10, LBY20, and LBY30 for LBY:CVP at 0:100, 10:90, 20:80, and 30:70, respectively) on a fresh matter basis, in 500 g in plastic bags and stored at 30 to $32^{\circ}C$. After storage, the bags were opened weekly from weeks 0 to 4. Fermentation quality and in vitro gas production (IVGP) were determined, as well as the dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber, acid detergent fiber and acid detergent lignin contents. Results: The contents of CP and EE increased, whereas all other components decreased, in proportion to LBY inclusion (p<0.01). The DM and OM contents gradually decreased in weeks 3 and 4 (p<0.05), while EE contents were lowest in week 0. The pH, ammonia nitrogen per total nitrogen ($NH_3-N/TN$) and V-score in each mixture and storage period demonstrated superior fermentation quality ($pH{\leq}4.2$, $NH_3-N/TN{\leq}12.5%$, and V-score>90%). The pH increased and $NH_3-N/TN$ decreased, with proportionate increases of LBY, whereas the pH decreased and $NH_3-N/TN$ increased, as the storage periods were extended (p<0.01). Although IVGP decreased in proportion to the amount of LBY inclusion (p<0.01), in vitro organic matter digestibility (IVOMD) was unaffected by the mixture ratios. The highest IVGP and IVOMD were observed in week 0 (p<0.01). Conclusion: The inclusion of LBY (as high as 30%) into CVP improves the chemical composition of the mixture, thereby increasing the CP content, while decreasing IVGP, without decreasing fermentation quality and IVOMD. In addition, a preservation period of up to four weeks can guarantee superior fermentation quality in all types of mixtures. Therefore, we recommend limiting the use of CVP as a feed ingredient, given its low nutritional value and improving feed quality with the inclusion of LBY.

Effects of Corn and Soybean Meal Types on Rumen Fermentation, Nitrogen Metabolism and Productivity in Dairy Cows

  • Shen, J.S.;Song, L.J.;Sun, H.Z.;Wang, B.;Chai, Z.;Chacher, B.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.351-359
    • /
    • 2015
  • Twelve multiparous Holstein dairy cows in mid-lactation were selected for a replicated $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement to investigate the effects of corn and soybean meal (SBM) types on rumen fermentation, N metabolism and lactation performance in dairy cows. Two types of corn (dry ground [DGC] and steam-flaked corn [SFC]) and two types of SBM (solvent-extracted and heat-treated SBM) with different ruminal degradation rates and extents were used to formulate four diets with the same basal ingredients. Each period lasted for 21 days, including 14 d for adaptation and 7 d for sample collection. Cows receiving SFC had a lower dry matter (DM) and total N intake than those fed DGC. However, the milk yield and milk protein yield were not influenced by the corn type, resulting in higher feed and N utilization efficiency in SFC-fed cows than those receiving DGC. Ruminal acetate concentrations was greater and total volatile fatty acids concentrations tended to be greater for cows receiving DGC relative to cows fed SFC, but milk fat content was not influenced by corn type. The SFC-fed cows had lower ruminal ammonia-N, less urea N in their blood and milk, and lower fecal N excretion than those on DGC. Compared with solvent-extracted SBM-fed cows, cows receiving heat-treated SBM had lower microbial protein yield in the rumen, but similar total tract apparent nutrient digestibility, N metabolism measurements, and productivity. Excessive supply of metabolizable protein in all diets may have caused the lack of difference in lactation performance between SBM types. Results of the present study indicated that increasing the energy degradability in the rumen could improve feed efficiency, and reduce environmental pollution.