• Title/Summary/Keyword: Rumen degradability

Search Result 164, Processing Time 0.022 seconds

The Effects of Xylose Treatment on Rumen Degradability and Nutrient Digestibility of Soybean and Cottonseed Meals

  • Sacakli, P.;Tuncer, S.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.655-660
    • /
    • 2006
  • Two trials were conducted to evaluate the effect of xylose treatment on rumen degradability characteristics of DM, OM and CP and in vivo digestibility of DM, OM, CP and crude fiber (CF) of soybean meal (SBM) and cottonseed meal (CSM). In Trial 1, three ruminally cannulated Merino rams were used. Xylose treatments at both levels, 0.5 and 1%, decreased effective degradability of DM, OM and CP of SBM, whereas 0.5 and 1% xylose treatment of CSM did not show any effect on effective degradability of DM, OM and CP. By contrast, maximum potential degradabilities of DM, OM and CP of CSM seemed to be increased by 1% xylose treatment. It was concluded that xylose treatment was effective in protecting SBM proteins from degradation in the rumen, but the same treatment was not so effective for CSM protein. In trial 2, three Merino rams were used. With treatments, DM, OM, CP and CF digestibilities of SBM and CSM were not changed. Crude fiber digestibility was numerically increased by the treatments of 0.5 and 1% xylose of both SBM and CSM compared to untreated SBM and CSM but differences were not significant. In conclusion SBM proteins can be effectively protected from degradation in the rumen by xylose treatment, without negatively affecting in vivo digestibility of protein, whereas xylose treatment appeared to be less effective on protecting of CSM proteins.

Effect of Diet on Enzyme Profile, Biochemical Changes and In sacco Degradability of Feeds in the Rumen of Buffalo

  • Kamra, D.N.;Saha, Sudipto;Bhatt, Neeru;Chaudhary, L. C.;Agarwal, Neeta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.374-379
    • /
    • 2003
  • Four rumen fistulated Murrah buffaloes were used to study the effect of four diets differing in roughage to concentrate ratio on rumen biochemical changes, microbial enzyme profile and in sacco degradability of feed in a $4{\times}4$ Latin Square design. The animals were fed four diets consisting of 80:20, 70:30, 60:40 and 50:50 ratios of wheat straw and concentrate mixtures, respectively. Wheat straw and concentrate mixture were mixed with water (0.6 l/kg feed) and complete feed mixture was offered to the animals at 8:00 h and 16:00 h in two equal parts. The variation in pH of rumen liquor (difference of maximum and minimum during 0-8 h post feeding) increased with increasing level of concentrate mixture in the diet. There was no effect of diet composition on volatile fatty acids, total nitrogen and trichloro-acetic acid precipitable nitrogen in the rumen liquor, but ammonia nitrogen increased with increasing level of concentrate mixture in the ration. Major portions of all fibre degrading enzymes were present in the particulate material (PM) of the rumen contents, but protease was absent in PM fraction. The activities of micro-crystalline cellulase, acetyl esterase and protease increased with increase in the level of concentrate mixture, but the activities of other enzymes (carboxymethylcellulase, filter paper degrading activity, xylanase, $\beta$-glucosidase and $\beta$-xylosidase) were not affected. The in sacco degradability and effective degradability of feeds increased with increasing level of concentrate mixture in the ration.

Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

  • Polyorach, S.;Poungchompu, O.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1273-1279
    • /
    • 2016
  • The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB) co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM) supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle ($410{\pm}10kg$) were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate) on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a), potential degradability (a+b) and effective degradability of dry matter (EDDM) linearly (p<0.01) increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b) and rate of degradation (c). In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials.

Feeding Value of Ammoniated Rice Straw Supplemented with Rice Bran in Sheep: II. In Situ Rumen Degradation of Untreated and Ammonia Treated Rice Straw

  • Orden, E.A.;Yamaki, K.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.906-912
    • /
    • 2000
  • The effect of ammonia treatment and rice bran supplementation on the in situ rumen degradation of rice straw was determined using three Japanese Corriedale wethers fitted with permanent rumen cannula. About 4 g samples of diets containing 100% untreated rice straw (URS); 100% ammonia treated rice straw (ARS); 65% URS+30% rice bran (RB)+5% soybean meal (SBM) (T1); and 85% ARS+15% RB (T2) were incubated at 0, 4, 8, 16, 24, 48, 72, and 96 hours in the rumen of sheep to measure dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) degradability. The DM disappearance of ARS based diets were about 20% higher than that of URS based diets. Rice bran supplementation improved DM disappearance of URS but not on ammoniated straw. Degradation parameters showed that ammoniation increased rate (c) of straw degradation resulting to higher DM and fiber degradability but RB supplementation did not. ARS gave similar DM and CP solubility and effective rumen degradability (ED) with that of the supplemented groups indicating that ammoniation alone can give the same effect on rumen degradability of sheep receiving low quality roughage. All degradation parameters for NDF were consistently higher in ARS based-diets indicating improved fiber solubility. Rice bran supplementation did not affect degradation characteristics of the diets except on soluble DM and CP fraction (A) of URS but not on ARS.

Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

  • Gao, Wei;Chen, Aodong;Zhang, Bowen;Kong, Ping;Liu, Chenli;Zhao, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.485-493
    • /
    • 2015
  • This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen microorganisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

Evaluation of Some Aquatic Plants from Bangladesh through Mineral Composition, In Vitro Gas Production and In Situ Degradation Measurements

  • Khan, M.J.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.537-542
    • /
    • 2002
  • A study was conducted to evaluate the nutritive potential value of different aquatic plants: duckweed (Lemna trisulaca), duckweed (Lemna perpusila), azolla (Azolla pinnata) and water-hyacinth (Eichhornia crassipes) from Bangladesh. A wide variability in protein, mineral composition, gas production, microbial protein synthesis, rumen degradable nitrogen and in situ dry matter and crude protein degradability were recorded among species. Crude protein content ranged from 139 to 330 g/kg dry matter (DM). All species were relatively high in Ca, P, Na, content and very rich in K, Fe, Mg, Mn, Cu and Zn concentration. The rate of gas production was highest in azolla and lowest in water-hyacinth. A similar trend was observed with in situ DM degradability. Crude protein degradability was highest in duckweed. Microbial protein formation at 24 h incubation ranged from 38.6-47.2 mg and in vitro rumen degradable nitrogen between 31.5 and 48.4%. Based on the present findings it is concluded that aquatic species have potential as supplementary diet to livestock.

Dietary lysophospholipids supplementation inhibited the activity of lipolytic bacteria in forage with high oil diet: an in vitro study

  • Kim, Hanbeen;Kim, Byeongwoo;Cho, Seongkeun;Kwon, Inhyuk;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1590-1598
    • /
    • 2020
  • Objective: The objective of this study was to evaluate the effects of lysophospholipids (LPL) supplementation on rumen fermentation, degradability, and microbial diversity in forage with high oil diet in an in vitro system. Methods: Four experimental treatments were used: i) annual ryegrass (CON), ii) 93% annual ryegrass +7% corn oil on a dry matter (DM) basis (OiL), iii) OiL with a low level (0.08% of dietary DM) of LPL (LLPL), and iv) OiL with a high level (0.16% of dietary DM) of LPL (HLPL). An in vitro fermentation experiment was performed using strained rumen fluid for 48 h incubations. In vitro DM degradability (IVDMD), in vitro neutral detergent fiber degradability, pH, ammonia nitrogen (NH3-N), volatile fatty acid (VFA), and microbial diversity were estimated. Results: There was no significant change in IVDMD, pH, NH3-N, and total VFA production among treatments. The LPL supplementation significantly increased the proportion of butyrate and valerate (Linear effect [Lin], p = 0.004 and <0.001, respectively). The LPL supplementation tended to increase the total bacteria in a linear manner (p = 0.089). There were significant decreases in the relative proportions of cellulolytic (Fibrobacter succinogenes and Ruminococcus albus) and lipolytic (Anaerovibrio lipolytica and Butyrivibrio proteoclasticus) bacteria with increasing levels of LPL supplementation (Lin, p = 0.028, 0.006, 0.003, and 0.003, respectively). Conclusion: The LPL supplementation had antimicrobial effects on several cellulolytic and lipolytic bacteria, with no significant difference in nutrient degradability (DM and neutral detergent fiber) and general bacterial counts, suggesting that LPL supplementation might increase the enzymatic activity of rumen bacteria. Therefore, LPL supplementation may be more effective as an antimicrobial agent rather than as an emulsifier in the rumen.

Manipulation of Rumen Fermentation by Yeast: The Effects of Dried Beer Yeast on the In vitro Degradability of Forages and Methane Production

  • Ando, S.;Khan, R.I.;Takahasi, J.;Gamo, Y.;Morikawa, R.;Nishiguchi, Y.;Hayasaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2004
  • The effects of the addition of yeast on in vitro roughage degradability and methane production were investigated in order to clarify the effects of yeast on the rumen microbes and to establish methods of rumen manipulation. Three roughages (whole crop corn, rice straw and Italian ryegrass) were incubated for 3, 6, 12 and 24 h with or without dried beer yeast following the method described by Tilley and Terry. Using the same method, these roughages were incubated with or without yeast extract, albumin or purified DNA. In vitro methane production was measured with or without dried beer yeast at 12 and 24 h. The degradability of yeast was found to be 57 and 80% at 12 and 24 h, respectively. The rate of degradation of fraction b was 6.16%/h. There was a significant increase in roughage degradability at 6 h (p<0.05), 12 h (p<0.05) and 24 h (p<0.01) by dried yeast addition. The degradability of all three roughages was higher in the samples treated with yeast extract than in the no addition samples except in the case of rice straw incubated for 12 h. Nevertheless, the magnitude of increment was smaller with the addition of yeast extract than without the addition of yeast. With the addition of purified DNA, there were significant increases in roughage degradability at 6 h (p<0.01), 12 h (p<0.01) and 24 h (p<0.05); however, higher degradability values were detected in the samples to which albumin was added, particularly at 6 h. If the degradability values of the no addition samples with those of samples containing yeast, yeast extract, DNA and albumin were compared, the largest difference was found in the samples to which yeast was added, although it is worth noting that higher values were observed in the yeast extract samples than in the DNA or albumin samples, with the exception of the case of rice straw incubated for 24 h. Methane production was significantly increased at both 12 and 24 h incubation. The increment of roughage degradation and methane production brought about by the addition of dried beer yeast to the samples was thought to be due to the activation of rumen microbes. Water soluble fraction of yeast also seemed to play a role in ruminal microbe activation. The increment of degradability is thought to be partially due to the addition of crude protein or nucleic acid but it is expected that other factors play a greater role. And those factors may responsible for the different effects of individual yeast on ruminal microbes.

DEGRADATION CHARACTERISTICS OF SOME TROPICAL FEEDS IN THE RUMEN

  • Navaratne, H.V.R.G.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • The rumen degradability of rice straw (untreated, urea-sprayed, urea-treated), grasses (Panicum maximum, Pennisetum clandestinum) and rice bran was compared. The mean in vivo organic matter digestibility of the untreated (US), urea-supplemented (SS) and urea-ammonia treated (TS) rice straw were 50.9, 53.9 and 57.4%, respectively. Rice bran contained extremely high levels of acid-insoluble ash (25.2% DM), and its OMD was 36.1%. Grasses had OMD values around 66%. Degradability measurements were performed with buffaloes using the nylon bag technique. The organic matter (OM) disappearance data were fitted to an model which was used to describe degradation pattern. The mean potentially degradable fraction for US, SS and TS was 61.5, 61.9 and 69.4%, respectively. Urea-ammonia treatment increased both the amount of OM degraded and the rate at which it was degraded in the rumen. Both grasses had similar values for degradable fraction (around 65%) and for rate constant for degradation (0.04). Rice bran contained high proportions of readily soluble material (23.9%), but the degradable OM fraction was only 13.2%. The low quality of rice bran is attributed to the contamination of rice hulls during processing.