• Title/Summary/Keyword: Rumen Protected

Search Result 43, Processing Time 0.028 seconds

Effects of heat stress and rumen-protected fat supplementation on growth performance, rumen characteristics, and blood parameters in growing Korean cattle steers

  • Kang, Hyeok Joong;Piao, Min Yu;Park, Seung Ju;Na, Sang Weon;Kim, Hyun Jin;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.826-833
    • /
    • 2019
  • Objective: This study was performed to evaluate whether hot temperature and rumen-protected fat (RPF) supplementation affect growth performance, rumen characteristics, and serum metabolites in growing stage of Korean cattle steers. Methods: Twenty Korean cattle steers ($230.4{\pm}4.09kg$ of body weight [BW], $10.7{\pm}0.09months$ of age) were divided into a conventional control diet group (n = 10) and a 0.8% RPF supplementation group (n = 10). Steers were fed 1.5% BW of a concentrate diet and 4 kg of tall fescue hay for 16 weeks (July 10 to August 6 [P1], August 7 to September 3 [P2], September 4 to October 1 [P3], October 2 to 30 [P4], of 2015). Results: The mean temperature-humidity index (THI) was higher (p<0.001) in P1 (76.8), P2 (76.3), and P3 (75.9) than in P4 (50.9). The mean THI of P1-3 were within the alert heat stress (HS) category range according to previously reported categories for feedlot cattle, and the mean THI of P4 was under the thermo-neutral range. Neither month nor RPF supplementation affected (p>0.05) average daily gain and gain to feed ratio. Month and RPF supplementation affected concentrations of glucose, albumin, and high-density lipoprotein (HDL); those of albumin and glucose tended to decrease (p<0.10), but HDL concentration increased (p<0.01) by RPF supplementation. Neither month nor RPF affected (p>0.05) ruminal pH, $NH_3-N$, and volatile fatty acid concentrations, whereas the C2:C3 ratio was affected (p<0.05) by month. Conclusion: Korean cattle may not have been significantly affected by alert HS during the growing stage. Growth performance was higher during hotter months, although some changes in blood metabolites were observed. The RPF supplementation affected some blood lipids and carbohydrate metabolites but did not affect growth performance.

Effects of ambient temperature and rumen-protected fat supplementation on growth performance, rumen fermentation and blood parameters during cold season in Korean cattle steers

  • Kang, Hyeok Joong;Piao, Min Yu;Park, Seung Ju;Na, Sang Weon;Kim, Hyun Jin;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.657-664
    • /
    • 2019
  • Objective: This study was performed to evaluate whether cold ambient temperature and dietary rumen-protected fat (RPF) supplementation affect growth performance, rumen fermentation, and blood parameters in Korean cattle steers. Methods: Twenty Korean cattle steers (body weight [BW], $550.6{\pm}9.14kg$; age, $19.7{\pm}0.13months$) were divided into a conventional control diet group (n = 10) and a 0.5% RPF supplementation group (n = 10). Steers were fed a concentrate diet (1.6% BW) and a rice straw diet (1 kg/d) for 16 weeks (January 9 to February 5 [P1], February 6 to March 5 [P2], March 6 to April 3 [P3], and April 4 to May 2 [P4]). Results: The mean and minimum indoor ambient temperatures in P1 ($-3.44^{\circ}C$, $-9.40^{\circ}C$) were lower (p<0.001) than those in P3 ($5.87^{\circ}C$, $-1.86^{\circ}C$) and P4 ($11.18^{\circ}C$, $4.28^{\circ}C$). The minimum temperature in P1 fell within the moderate cold-stress (CS) category, as previously reported for dairy cattle, and the minimum temperatures of P2 and P3 were within the mild CS category. Neither month nor RPF supplementation affected the average daily gain or gain-to-feed ratio (p>0.05). Ruminal ammonia nitrogen concentrations were higher (p<0.05) in cold winter than spring. Plasma cortisol concentrations were lower (p<0.05) in the coldest month than in the other months. Serum glucose concentrations were generally higher in colder months than in the other months but were unaffected by RPF supplementation. RPF supplementation increased both total cholesterol (p = 0.004) and high-density lipoprotein (HDL) concentrations (p = 0.03). Conclusion: Korean cattle may not be significantly affected by moderate CS, considering that the growth performance of cattle remained unchanged, although variations in blood parameters were observed among the studied months. RPF supplementation altered cholesterol and HDL concentrations but did not affect growth performance.

The Effects of Xylose Treatment on Rumen Degradability and Nutrient Digestibility of Soybean and Cottonseed Meals

  • Sacakli, P.;Tuncer, S.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.655-660
    • /
    • 2006
  • Two trials were conducted to evaluate the effect of xylose treatment on rumen degradability characteristics of DM, OM and CP and in vivo digestibility of DM, OM, CP and crude fiber (CF) of soybean meal (SBM) and cottonseed meal (CSM). In Trial 1, three ruminally cannulated Merino rams were used. Xylose treatments at both levels, 0.5 and 1%, decreased effective degradability of DM, OM and CP of SBM, whereas 0.5 and 1% xylose treatment of CSM did not show any effect on effective degradability of DM, OM and CP. By contrast, maximum potential degradabilities of DM, OM and CP of CSM seemed to be increased by 1% xylose treatment. It was concluded that xylose treatment was effective in protecting SBM proteins from degradation in the rumen, but the same treatment was not so effective for CSM protein. In trial 2, three Merino rams were used. With treatments, DM, OM, CP and CF digestibilities of SBM and CSM were not changed. Crude fiber digestibility was numerically increased by the treatments of 0.5 and 1% xylose of both SBM and CSM compared to untreated SBM and CSM but differences were not significant. In conclusion SBM proteins can be effectively protected from degradation in the rumen by xylose treatment, without negatively affecting in vivo digestibility of protein, whereas xylose treatment appeared to be less effective on protecting of CSM proteins.

A REVIEW OF THE MICROBIAL DIGESTION OF FEED PARTICLES IN THE RUMEN

  • McAllister, T.A.;Bae, H.D.;Yanke, L.J.;Cheng, K.J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.303-316
    • /
    • 1994
  • Microbial digestion of feed in the rumen involves a sequential attack culminating in the formation of fermentation products and microbial cells that can be utilized by the host animal. Most feeds are protected by a cuticular layer which is in effect a microbial barrier that must be penetrated or circumvented for digestion to proceed. Microorganisms gain access to digestible inner plant tissues through damage to the cuticle, or via natural cell openings (e.g., stomata) and commence digestion from within the feed particles. Primary colonizing bacteria adhere to specific substrates, divide to form sister cells and the resultant microcolonies release soluble substrates which attract additional microorganisms to the digestion site. These newly attracted microorganisms associate with primary colonizers to form complex multi-species consortia. Within the consortia, microorganisms combine their metabolic activities to produce the diversity of enzymes required to digest complex substrates (e.g., cellulose, starch, protein) which comprise plant tissues. Feed characteristics that inhibit the microbial processes of penetration, colonization and consortia formation can have a profound effect on the rate and extent of feed digestion in the rumen. Strategies such as feed processing or plant breeding which are aimed at manipulating feed digestion must be based on an understanding of these basic microbial processes and their concerted roles in feed digestion in the rumen.

"Dietary supplementation of L-tryptophan" increases muscle development, adipose tissue catabolism and fatty acid transportation in the muscles of Hanwoo steers

  • Priatno, Wahyu;Jo, Yong-Ho;Nejad, Jalil Ghassemi;Lee, Jae-Sung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.595-604
    • /
    • 2020
  • This study investigated the effects of dietary rumen-protected L-tryptophan (TRP) supplementation (43.4 mg of L-tryptophan kg-1 body weigt [BW]) for 65 days in Hanwoo steers on muscle development related to gene expressions and adipose tissue catabolism and fatty acid transportation in longissimus dorsi muscles. Eight Hanwoo steers (initial BW = 424.6 kg [SD 42.3]; 477 days old [SD 4.8]) were randomly allocated to two groups (n = 4) of control and treatment and were supplied with total mixed ration (TMR). The treatment group was fed with 15 g of rumen-protected TRP (0.1% of TMR as-fed basis equal to 43.4 mg of TRP kg-1 BW) once a day at 0800 h as top-dressed to TMR. Blood samples were collected 3 times, at 0, 5, and 10 weeks of the experiment, for assessment of hematological and biochemical parameters. For gene study, the longissimus dorsi muscle samples (12 to 13 ribs, approximately 2 g) were collected from each individual by biopsy at end of the study (10 weeks). Growth performance parameters including final BW, average daily gain, and gain to feed ratio, were not different (p > 0.05) between the two groups. Hematological parameters including granulocyte, lymphocyte, monocyte, platelet, red blood cell, hematocrit, and white blood cell showed no difference (p > 0.05) between the two groups except for hemoglobin (p = 0.025), which was higher in the treatment than in the control group. Serum biochemical parameters including total protein, albumin, globulin, blood urea nitrogen, creatinine phosphokinase, glucose, nonesterified fatty acids, and triglyceride also showed no differences between the two groups (p > 0.05). Gene expression related to muscle development (Myogenic factor 6 [MYF6], myogenine [MyoG]), adipose tissue catabolism (lipoprotein lipase [LPL]), and fatty acid transformation indicator (fatty acid binding protein 4 [FABP4]) were increased in the treatment group compared to the control group (p < 0.05). Collectively, supplementation of TRP (65 days in this study) promotes muscle development and increases the ability of the animals to catabolize and transport fat in muscles due to an increase in expressions of MYF6, MyoG, FABP4, and LPL gene.

Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis

  • Agung Irawan;Ahmad Sofyan;Teguh Wahyono;Muhammad Ainsyar Harahap;Andi Febrisiantosa;Awistaros Angger Sakti;Hendra Herdian;Anuraga Jayanegara
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1666-1684
    • /
    • 2023
  • Objective: Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. Methods: A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. Results: In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. Conclusion: RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.

Changes in growth performance, carcass characteristics, and meat properties of late fattening Hanwoo steers according to supplementation of rumen protected methionine and lysine

  • Ahn, Jun-Sang;Kwon, Eung-Gi;Shin, Jong-Suh;Kim, Min-Ji;Son, Gi-Hwal;Choi, Chang-Six;Lee, Chang-Woo;Park, Joong-Kook;Park, Byung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.671-682
    • /
    • 2019
  • This study was conducted to evaluate the effects of rumen-protected methionine and lysine (RPML) on the growth performance, carcass characteristics, and meat properties of Hanwoo steers. Fourteen late fattening steers were randomly assigned to either the control (commercial concentrate + rice straw) or the treatment (commercial concentrate + rice straw + 20 g of RPML/head/day) group. The average daily gain (ADG) and feed conversion ratio (FCR) were not different between the treatment and control group. The rib eye area was slightly but not significantly higher in the treatment group than in the control group. The back fat thickness decreased with the RPML supplementation, although not significantly, and the appearance of yield C grade was lower in the treatment group than in the control group. The marbling score was similar between the control and treatment groups. The supplementation of RPML had no effect on the physicochemical compositions, myoglobin values, Commission Internationale de $l^{\prime}{\acute{E}}clairage$ (CIE) color values, fatty acid composition, and thiobarbituric acid reactive substances (TBARS) values in the longissimus muscle. Thus, the supplementation of RPML does not any negative effects on the growth performance, carcass characteristics, and meat properties of late fattening Hanwoo steers.

The effect of a finishing diet supplemented with γ-aminobutyric acids on carcass characteristics and meat quality of Hanwoo steers

  • Barido, Farouq Heidar;Lee, Chang Woo;Park, Yeon Soo;Kim, Do Yeong;Lee, Sung Ki
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.621-632
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of supplementation with rumen-protected γ-aminobutyric acid (GABA) on carcass characteristics and meat quality of Hanwoo steers. Methods: Eighteen Hanwoo steers with an average initial weight of 644.83±12.91 kg were randomly allocated into three different groups. Each group consisted of 6 animals that were treated with different diets formulated based on the animals' body weights. The control (C) group was fed a basal diet consisting of concentrate and rice straw with 74% total digestible nutrients (TDNs) and 12% crude protein (CP). The two other groups were treatment groups; one group was fed a basal diet (74% TDNs and 12% CP) supplemented with rumen-protected GABA at a dose of 150 mg/kg feed, and the other group was fed a basal diet (74% TDNs and 12% CP) supplemented with GABA at a dose of 300 mg/kg feed. Results: The GABA supplementation significantly contributed to better growth performance (p<0.05), especially the weight gain and average daily gain. It also contributed to the lower cooking loss (p<0.05), improvements in essential antioxidant enzymes and stable regulation of antioxidant activities in the longissimus lumborum of Hanwoo steers, as represented by the lower formation of malondialdehyde content within the meat, the inhibition of myoglobin oxidation indicated by the retention of the oxymyoglobin percentage, and the suppression of metmyoglobin percentage during cold storage (p<0.05). Conclusion: Higher doses of GABA may not significantly promote better animal performance and meat quality, suggesting that dietary supplementation with GABA at a dose of 100 ppm is sufficient to improve the meat quality of Hanwoo steers.

EFFECTS OF THE SUPPLEMENTAL LEVEL OF PROTECTED LYSINE ON PERFORMANCES OF HOLSTEIN DAIRY COWS

  • Han, In K.;Choi, Y.J.;Ha, J.K.;Ko, Y.G.;Lee, H.S.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 1996
  • The objective of this study was to investigate the optimum level of the rumen protected lysine (RPLys) for early lactating Holstein dairy cow. This experiment was carried out with 16 Holstein dairy cows for 106 days and consisted of 4 treatments : $T_1$ (RPLys 0%), $T_2$ (RPLys 0.1%), $T_3$ (RPLys 0.2%) and $T_4$ (RPLys 0.3%). The results obtained are summarized as follows : 1. The daily intakes of feed were similar among treatments, but the digestibility of crude protein tended to increase 0.5-5.0% with increased level of RPLys and also the crude fiber digestibility increased (p < 0.05). 2. The daily weight gain for cows in $T_1$ was 253 g, which was lower than any other treatments (p < 0.05). The highest was 521 g in $T_3$. Also, the body condition score was changed from 3.22 at initial to 3.45 at final. The lowest increase in body condition score as 0.09 was obtained in control and the highest as 0.60 in $T_3$ (p < 0.01). 3. The total milk production of groups $T_2$, $T_3$ and $T_4$ were higher than $T_1$, as well as total protein, total fat and total solid yield. Especially in $T_4$ treatment group milk yield was higher than other treatments. The content of fat was higher in $T_2$ and $T_4$ compared to other treatments. Other components of milk were not significantly different (p > 0.05). The persistencies of lactation were increased in all RPLys treatments, especially, rate of reduction in milk yield was lowest in $T_4$ (p < 0.05). 4. The total amino acid content in the plasma, as well as plasma lysine content showed no consistent trend with treatments.

Lactation Performance of German Fawn Goat in Relation to Feeding Level and Dietary Protein Protection

  • Chowdhury, S.A.;Rexroth, H.;Kijora, C.;Peters, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.222-237
    • /
    • 2002
  • Effects of high and low levels of feeding with or without protected protein on the performance of lactating goats were studied. Twenty four German Fawn goats either from 1st ($43.37{\pm}3.937$ kg and 2 year old) or 3rd $62.64{\pm}6.783$ kg and 4-5 year old) parity were used for the trial. Feeding levels were 7.2 (I) and 5.2 (II) MJ ME/litre of milk of 3.5% fat in addition to that of the maintenance allowance. At each feeding level, diet had either unprotected (U) or formaldehyde protected (P) soya-meal. Thus, four diets were IU, IP, IIU and IIP, having six animals in each. The diets were composed of hay and pellet (10:4:1 of beet pulp : barley : soya-meal). Effect of feeding level, protein protection, parity, health status and kid number on intake, milk yield, milk composition, growth rate of goats were recorded across the 21 weeks of study. High feeding level resulted increase (p<0.001) in estimated metabolizable energy (ME) and metabolizable protein (MP) availability. Dietary inclusion of protected soya-meal increased (p<0.001) the estimated MP but not the ME availability. Animals in 1st parity ate more (p<0.001) DM (111 vs. 102 g/kg $W^{0.75}$/d) than those in 3rd parity. Animals with twin kids (110 g/kg $W^{0.75}$/d) had higher (p<0.001) DM intake than those with single kid (102 g/kg $W^{0.75}$/d). Fat (4%) corrected milk (FCM) yield was not effected by high (1,924 g/d) or low (1,927 g/d) feeding level but increased (p<0.001) with protected (2,166 g/d) compared with unprotected (1,703 g/d) soya-meal. FCM yield for four dietary combinations were 1,806, 2,078, 1,600 and 2,254 g/d for diets IU, IP, IIU and IIP, respectively. For unit increase (g) in estimated MP availability relative to ME (MJ) intake, FCM yield increased ($1,418{\pm}275.6$) g daily ($r^2$=0.58; p<0.001). Milk fat (3.14 vs. 3.54%; p<0.001) and protein (2.94 vs. 3.04% p<0.05) contents were lower at high than the low feeding level. Protected protein increased (p<0.001) the fat, lactose and net energy (NE) content of milk. Milk urea concentration of 175, 183, 192 and 204 mg/l for diets IU, IP, IIU and IIP, respectively indicated lower RDP content of these diets. The RDP contents were 6.97, 6.70, 7.30 and 6.83 g/MJ of ME for diets IU, IP, IIU and IIP, respectively. Live weight change over the experimental period were 41, 6, 17 and 19 g/d. Absence of any positive response of high feeding was probably due to inefficient rumen fermentation resulting from inadequate RDP supply. Protected protein improved production performance apparently by increasing MP:ME ratio in the absorbed nutrient.