• 제목/요약/키워드: Rumen Protected

검색결과 43건 처리시간 0.018초

Effect of Rumen Protected Methionine on Lactational Performance of Dairy Cows

  • Izumi, K.;Kikuchi, C.;Okamoto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권9호
    • /
    • pp.1235-1238
    • /
    • 2000
  • Thirty-six Holstein dairy cows were used to evaluate the effect of a rumen protected methionine supplement (RPMet). The cows were divided into two groups of 18 each (control/experimental). The experimental group was given 15 g/d of RPMet (Mepron $^{(R)}$M85, Degussa) from the 4th to the 26th week postpartum. All cows were fed a similar amount of forage including alfalfa silage, corn silage and timothy silage. Concentrate mixture was offered in proportion to the milk yield of each cow. Sufficiency of major metabolizable AAs was checked. Milk yield and milk composition was monitored for each individual cow. A metabolic profile test (MPT) was carried out at the 7th, 11th and 21st week postpartum. Without supplement, both methionine and leucine fell short of the daily requirement. Supplementation with 15 g/d RPMet was calculated to be within a sufficient margin of safety. Milk yield tended to remain higher in the supplemented group than in the controls during supplementation with RPMet. The differences in weekly milk production at the 17th, 18th, 19th and 22nd weeks postpartum were significantly high in the RPMet group (p<0.05). The average 305-d milk yield and the percentages of milk fat, milk protein and solids-not-fat were not affected by the treatment. No differences were observed in either the somatic cell count in the milk or the reproductive status. Judging from MPT, all the cows were in good health during lactation.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

EFFECT OF SUPPLEMENTING RUMEN-PROTECTED LYSINE AND METHIONINE ON RUMINAL CHARACTERISTICS AND NUTRIENT DIGESTIBILITY IN SHEEP

  • Han, In K.;Ha, J.K.;Lee, S.S.;Ko, Y.G.;Lee, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권2호
    • /
    • pp.223-229
    • /
    • 1996
  • This experiment was conducted to investigate the protein sparing effect of rumen protected lysine(RPLys) and methionine hydroxyl analogue(MHA) in sheep. The treatments were $T_1$ (CP 15% + RPLys 0%), $T_2$ (CP 12% + RPLys 0%), $T_3$ (CP 12% + RPLys 0.4%) and $T_4$ (CP 12% + RPLys 0.4% + MHA 0.3%). Ruminal characteristics, in situ and in vitro digestibility and nitrogen retention rate were measured in sheep receiving different combinations of dietary supplement. The results are summarized as follows: 1. Ruminal pH and VFA concentrations were not affected by the treatments. Ruminal ammonia-N concentration was high in sheep fed diets $T_2$, $T_3$ and $T_4$ with the highest value in the $T_4$ treatment(p<0.05). 2. The digestibilities of dry matter and organic matter were not affected by the treatments. 3. Nitrogen losses through feces and urine were the highest with $T_1$ (p<0.05) and nitrogen retention rates of groups $T_1$, $T_2$, $T_3$ and $T_4$ were 18.6, 32.4, 35.5 and 27.5% of nitrogen intake, respectively, indicating that RPLys supplementation improved nitrogen retention in sheep.

Responses of Dairy Cows to Supplemental Highly Digestible Rumen Undegradable Protein and Rumen-protected Forms of Methionine

  • Sun, T.;Yu, X.;Li, S.L.;Dong, Y.X.;Zhang, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.659-666
    • /
    • 2009
  • Metabolizable protein (MP) supply and amino acid balance in the intestine were manipulated through selection of highly digestible rumen-undegradable protein (RUP) sources and protected methionine (Met) supplementation. Four ruminallycannulated, multiparous Holstein cows averaging 193${\pm}$13 days in milk were used in a 4${\times}$4 Latin square design to assess N utilization and milk production responses to changes in RUP level, post-ruminal RUP digestibility and protected Met supplementation. Treatments were A) 14.0% crude protein (CP), 8.0% rumen degradable protein (RDP) and 6.0% RUP of low intestinal digestibility (HiRUP-LoDRUP); B) 14.1% CP, 8.1% RDP and 6.0% RUP of high intestinal digestibility (HiRUP-HiDRUP); C) 13.1% CP, 7.9% RDP and 5.2% RUP of high intestinal digestibility (LoRUP-HiDRUP), and D) 13.1% CP, 7.9% RDP and 5.2% RUP of high intestinal digestibility plus rumen escape sources of Met (LoRUP-HiDRUP+Met). Experimental diets were formulated to have similar concentrations of RDP, net energy of lactation ($NE_L$), neutral detergent fiber (NDF), acid detergent fiber (ADF), calcium, phosphorus and ether extract using the NRC model (2001). Results showed that dry matter intake (DMI), production of milk fat and protein were similar among treatments. Milk production was similar for diet HiRUP-LoDRUP, HiRUP-HiDRUP and LoRUP-HiDRUP+Met, and significantly higher than diet LoRUP-HiDRUP. Milk fat and protein percentage were higher for cows receiving HiDRUP treatments, with the greatest increases in the diet LoRUP-HiDRUP+Met. There was no significant change in ruminal pH, $NH_3g-N$ and volatile fatty acid (VFA) concentration among all treatments. Apparent digestibility of dry matter (DM), CP, NDF and ADF and estimated bacterial CP synthesis were similar for all treatments. Nitrogen intakes, blood and milk urea-N concentrations were significantly higher for cows receiving HiRUP diets. Urine volume and total urinary N excretion were significantly lowered by LoRUP diets. Lowering dietary RUP level while supplementing the highly digestible RUP source with rumen escape sources of Met resulted in similar milk production, maximal milk fat and protein concentration and maximum N efficiency, indicating that post-ruminal digestibility of RUP and amino acid balance in the small intestine can be more important than total RUP supplementation.

The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

  • Cho, Sangbuem;Mbiriri, David Tinotenda;Shim, Kwanseob;Lee, A-Leum;Oh, Seong-Jin;Yang, Jinho;Ryu, Chaehwa;Kim, Young-Hoon;Seo, Kang-Seok;Chae, Jung-Il;Oh, Young Kyoon;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권11호
    • /
    • pp.1652-1662
    • /
    • 2014
  • The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a $4{\times}4$ Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at $30^{\circ}C$ and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower acetate:propionate (A/P) ratios than non-additive supplementation. High concentrate diets had significantly lower pH. Interactions between energy and additive were observed (p<0.01) in ammonia nitrogen production. Supplementation of diets with the additive resulted in lower rumen and rectal temperatures, hence the additive showed promise in alleviating undesirable effects of heat stress in cattle.

Effect of Feeding High Forage Diets with Supplemental Fat on Blood Metabolites, Rumen Fermentation and Dry Matter Digestibility in Dairy Cows

  • Abdullah, M.;Young, J.W.;Tyler, H.D.;Mohiuddin, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권4호
    • /
    • pp.451-456
    • /
    • 2000
  • Fifty mid-lactation Holstein cows were used in a six-week feeding trial to study effects of high-forage, and high-fat diets on blood constituents, rumen fermentation and dry matter digestibility. Cows were divided into 10 replicates, each consisting of five cows. Each cow was assigned to a control (diet 1) or one of the four experimental diets (high-forage (75%), high-fat (7.5%) (diet 2); high-forage. medium-fat (5.0%) (diet 3); medium forage (65%), high-fat (diet 4); medium-forage, medium-fat (diet 5)), or a control diet containing about 50% forage and 2% fat. All diets were isonitrogenous (17.7% crude protein). The forage mixture consisted of 20% alfalfa hay, 40% alfalfa haylage, and 40% corn silage. Supplemental fat included 80% rumen-protected fat and 20% yellow grease. A non-significant difference was observed in concentrations of blood glucose for cows on different experimental and control diets. Plasma nonesterified fatty acids (NEFA) were higher in cows consuming experimental diets than those consuming the control diet. However, differences in NEFA concentrations in the plasma of cows consuming diets with different forage and fat levels were not significant. Rumen pH, concentration of volatile fatty acids (VFA) in rumen contents, and dry matter digestibility of control and experimental diets, and diets with different levels of forage and supplemental fat did not differ significantly.

EFFECT OF SUPPLEMENTING RUMEN-PROTECTED LYSINE ON GROWTH PERFORMANCE AND PLASMA AMINO ACID CONCENTRATIONS IN SHEEP

  • Han, In K.;Ha, J.K.;Lee, S.S.;Ko, Y.G.;Lee, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권3호
    • /
    • pp.309-313
    • /
    • 1996
  • This experiment was carried out to investigate the effect of rumen-protected lysine (RPLys) on growth rate, feed efficiency and plasma amino acid concentrations in sheep. RPLys was supplemented at the level of 0% ($T_1$), 0.2% ($T_2$) and 0.4% ($T_3$) of total DMI with 24 sheep in a 56 day feeding trial. The results are summarized as follows: 1. live weight gain of sheep in groups $T_1$, $T_2$ and $T_3$ was 219, 216 and 244 g/d, and was significantly (p < 0.05) higher for $T_3$ through the entire experiment. 2. Feed intake was not affected by RPLys supplementation. 3. The group fed $T_3$ had a significantly (p < 0.05) better feed efficiency than the groups fed $T_1$ and $T_3$. The response of $T_3$ was higher in growing period II of feeding low protein basal diet than in period I. 4. Plasma lysine concentrations tended to be higher with supplementing RPLys, but there were no differences between $T_2$ and $T_3$. 5. Supplementing RPLys in the diets increased plasma concentrations of arginine, asparagines, threonine, serine, valine and leucine compared with sheep receiving no RPLys. In contrast, plasma histidine was lower in sheep fed the supplementing RPLys than fed the diet $T_1$ with significant (p < 0.05) difference.

Development and Evaluation of Protected Fat in Wheat Straw Based Total Mixed Ration

  • Sirohi, S.K.;Malik, Raman;Walli, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권10호
    • /
    • pp.1405-1408
    • /
    • 2001
  • Ca salt of soybean oil (PSO) and that of mustard oil plus mahua oil (PMOMO) (50:50) were prepared using double decomposition method, and further tested for their fatty acid composition and degree of saponification. Furthermore, the different levels of protected fat of PSO and PMOMO were evaluated in wheat straw based total mixed ration (TMR) in vitro. Results indicated that capric, lauric, myristic, palmitic, steric, oleic, linoleic, leinolenic acids were traces, traces, traces, 10.00, 2.00, 25.00, 58.50, 5.0% in PSO while the corresponding values in PMOMO were 1.08, 0.28, 0.45, 16.9, 12.95, 44.38, 17.46 and 6.50%, respectively. The degree of saponification of both protected fat supplements was more than 80%. Six treatment combinations were tested I.e., blank without feed and fat supplement (T1); control diet with out fat supplement (T2); control diet plus bypass fat supplement (PSO) so that diet contain 5% fat (T3); control diet plus bypass fat supplement (PSO) so that diet contain 7.5% fat (T4); two more diets viz. T5 and T6 were formulated using bypass fat supplement from PMOMO containing 5 and 7.5% fat respectively. TMR was prepared using 50% concentrate mixture and 50% wheat straw. Result indicated that TVFA, $NH_3-N$,TCA-N, total-N and total gas production were increased in treatment diets at 7.5% level of supplementation, however, fermentation pattern remain similar at 5.0% level of supplementation with respect to control diet. Nevertheless, IVDMD and IVOMD values remained unchanged, rather non-significant at both fat levels and with the both fat sources. On the basis of results it was concluded that Ca-salt of Soybean oil or Mustard plus Mahua oil did not show any negative effect either on digestibility or on microbial protein synthesis in rumen, hence the dietary fat upto 7.5% level in total mixed ration based on wheat straw, could be safely used without any adverse effect on rumen fermentation.

Effect of Rumen-protected Choline Addition on Milk Performance and Blood Metabolic Parameters in Transition Dairy Cows

  • Xu, Guozhong;Ye, Jun'An;Liu, Jianxin;Yu, Yueying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.390-395
    • /
    • 2006
  • This work was conducted to study the effect of rumen-protected choline (RPC) addition on milk performance and blood metabolic parameters in transition dairy cows. In Experiment 1, fourteen Chinese Holstein dairy cows were supplemented with 0 or 20 g/d of RPC from 7 d before expected calving to 21 d post partum. Feeding of RPC tended to increase milk yield and milk protein percentage, while milk fat and lactose percentage were not changed. Plasma concentrations of glucose tended to increase as cows consumed RPC, while plasma concentrations of triglycerides, very low density lipoproteins, cholesterol and nonesterified fatty acids were not significantly different between the two groups. In Experiment 2, thirty-six Chinese Holstein dairy cows were supplemented with 0, 30, 60 or 90 g/d RPC from 15 d before expected calving to 15 d post partum. Feeding of RPC tended to increase yield of milk and 4% fat-corrected milk for all the lactating cows, and milk composition was similar among the four groups. Plasma concentrations of glucose were remained at a higher level in 30 or 60 g/d RPC-supplemented groups, and nonesterified fatty acids were decreased in the 30 g/d group. Concentrations of triglycerides tended to reduce in 30 and 90 g/d RPC-supplemented animals, and cholesterol was reduced in 0 or 30 g/d group. These results suggest that RPC addition tended to increase milk yield and improve blood metabolic parameters during transition dairy cows, and feeding 30 g/d of RPC may be the optimal.

Supplementation of guanidinoacetic acid and rumen-protected methionine increased growth performance and meat quality of Tan lambs

  • Zhang, Jian Hao;Li, Hai Hai;Zhang, Gui Jie;Zhang, Ying Hui;Liu, Bo;Huang, Shuai;Guyader, Jessie;Zhong, Rong Zhen
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1556-1565
    • /
    • 2022
  • Objective: Tan lambs (n = 36, 3 mo old, 19.1±0.53 kg) were used to assess effects of dietary guanidinoacetic acid (GAA) and rumen-protected methionine (RPM) on growth performance, carcass traits, meat quality, and serum parameters. Methods: Lambs were randomly assigned to three treatment groups, with 6 pens per group and 2 lambs per pen. Dietary treatments were: basal diet alone (I); basal diet supplemented with 0.08% GAA+0.06% RPM (II); and basal diet supplemented with 0.08% GAA+0.08% RPM (III). Diets were provided three times a day for 90 d. Intake per pen was recorded daily and individual lamb body weight (BW) was measured monthly. Carcass traits were measured after slaughter and meat quality at the end of the experiment, blood samples were taken on a subgroup of lambs for analysis of indicators mostly related to protein metabolism. Results: Final BW and average daily gain for the first and second month, and for the entire experiment were greater in Treatment II compared to Treatment I (p<0.05), whereas feed to gain ratio was lower (p<0.05). Treatment II had the optimal dressing percentage and net meat weight proportion, as well as crude protein and intramuscular fat concentrations in muscles. Treatment II improved meat quality, as indicated by the greater water holding capacity, pH after 45 min and 48 h, and lower shear force and cooking loss. Dietary supplementation of GAA and RPM also increased the meat color a* and b* values at 24 h. Finally, Treatment II increased total protein, and serum concentrations of albumin and creatinine, but decreased serum urea nitrogen concentrations, indicating improved protein efficiency. Conclusion: In this study, 0.08% GAA+0.06% RPM supplementation improved growth performance and meat quality of Tan lambs.