• Title/Summary/Keyword: Rumen Parameters

Search Result 146, Processing Time 0.026 seconds

Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters

  • Mamvura, Chiedza Isabel;Cho, Sangbuem;Mbiriri, David Tinotenda;Lee, Hong-Gu;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1577-1583
    • /
    • 2014
  • Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity.

Effects of Spent Mushroom Substrates Supplementation on Rumen Fermentation and Blood Metabolites in Hanwoo Steers

  • Oh, Young-Kyoon;Lee, Won-Man;Choi, Chang-Weon;Kim, Kyoung-Hoon;Hong, Seong-Koo;Lee, Sang-Cheol;Seol, Yong-Joo;Kwak, Wan-Sup;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1608-1613
    • /
    • 2010
  • This study was designed to investigate the effects of supplementation of spent mushroom substrates (SMS) on rumen fermentation and blood metabolites in Hanwoo steers. The experiment was conducted as a duplicated Latin square design with six Hanwoo steers ($600{\pm}47\;kg$), each permanently fitted with a ruminal cannula. There were three treatments; i) control (concentrates 4.8 kg +rice straw 1.2 kg/d), ii) Pleurotus eryngiia (PE) treatment (concentrates 4.8 kg+rice straw 0.73 kg+Pleurotus eryngiia 1.20 kg/d) and iii) Pleurotus osteratus (PO) treatment (concentrates 4.8 kg+rice straw 0.73 kg+Pleurotus osteratus 1.20 kg/d). There were no major effects of different dietary treatments on rumen parameters such as pH, ammonia-N, individual and total VFA production. Parameters of N utilization, including blood urea nitrogen (BUN), total protein and albumin levels, were not significantly different among the treatments, except for creatinine. Thus, the present results indicated that protein utilization was mostly unaffected by SMS treatments such as PE and PO, even though creatinine concentration was lower in PE compared with control and PO treatments (p<0.05). The present results indicate that Pleurotus eryngii and Pleurotus osteratus could be used as a forage source to replace 40% of rice straw without any negative effects on rumen fermentation and blood metabolites in Hanwoo steers.

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Effect of Dietary Structural to Nonstructural Carbohydrate Ratio on Rumen Degradability and Digestibility of Fiber Fractions of Wheat Straw in Sheep

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1591-1598
    • /
    • 2002
  • The effect of different dietary structural carbohydrate (SC) to nonstructural carbohydrate (NSC) ratios on fiber degradation, digestion, flow, apparent digestibility and rumen fluid characteristics was studied with a design using 18 wethers fitted with permanent rumen and duodenum cannulae. All sheep were divided into six groups randomly, receiving six diets with varying SC to NSC ratios. All diets contained the same proportion of wheat straw and concentrate. The dietary SC to NSC ratios were adjusted by adding cornstarch to the concentrate supplements. The duodenal and fecal flows of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HC) and cellulose (CEL) were estimated using chromium-mordanted wheat straw as a flow marker. The degradation parameters of wheat straw DM, NDF, ADF, HC and CEL were determined by incubating the ground wheat straw in nylon bags in the rumen for different periods of time. There was no effect (p>0.05) of the different dietary SC to NSC ratios on rumen pH or $NH_3$-N, but acetate, propionate and butyrate concentrations were significantly affected (p<0.05 or p<0.01) by dietary SC to NSC ratios in the rumen fluid. When the dietary SC to NSC ratio was 2.86, the highest rumen degradability of wheat straw DM, NDF, ADF and CEL was found, but the highest apparent rumen digestibilities of DM, NDF, ADF, HC and CEL occurred at a 2.64 SC to NSC ratio. However, because of compensatory digestion in the hindgut, the apparent digestibilities of DM, NDF, ADF, HC and CEL were highest when the dietary SC to NSC ratio was 2.40. In conclusion, there is a optimal range of dietary SC to NSC ratios (between 2.86 and 2.40) that is beneficial to maximize wheat straw fiber degradation and apparent digestibility.

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Microbiome-metabolomics analysis of the effects of decreasing dietary crude protein content on goat rumen mictobiota and metabolites

  • Zhu, Wen;Liu, Tianwei;Deng, Jian;Wei, Cong Cong;Zhang, Zi Jun;Wang, Di Ming;Chen, Xing Yong
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1535-1544
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of decreasing dietary crude protein content on rumen fermentation, mictobiota, and metabolites in goats. Methods: In an 84-day feeding trial, a total of twelve male Anhui white goat kids with initial body weight 15.9±1.13 kg were selected and randomly classified into two groups, feeding a normal crude protein diet (14.8% CP, NCP) or a low crude protein diet (12.0% CP, LCP). At the end of the experimental trial (on day 84), six animals were randomly selected from each group and were slaughtered to collect rumen fluid samples for the analysis of rumen fermentation parameters, microbiome, and metabolome. Results: The concentrations of ammonia-nitrogen, total volatile fatty acid, acetate, and propionate were decreased (p<0.05) in the LCP group in comparison with those in the NCP group. The abundances of genera Prevotella, Campylobacter, Synergistetes, and TG5, which were associated with nitrogen metabolism, were lower (p<0.05) in the LCP group compared with those in the NCP group. The levels of 78 metabolites (74 decreased, 4 increased) in the rumen fluid were altered (p<0.05) by the treatment. Most of the ruminal metabolites that showed decreased levels in the LCP group were substrates for microbial protein synthesis. Metabolic pathway analysis showed that vitamin B6 metabolism was significantly different (p<0.05) in rumen fluid between the two treatments. Conclusion: Decreased dietary protein level inhibited rumen fermentation through microbiome and metabolome shifts in goat kids. These results enhance our understanding of ruminal bacteria and metabolites of goat fed a low protein diet.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.

Rumen Parameters and Urea Kinetics in Goats and Sheep

  • Darlis, N. Abdullah;Halim, R.A.;Jalaludin, S.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.922-928
    • /
    • 2000
  • The effects of animal species and supplements on rumen fluid characteristics, plasma urea-N (PUN) concentration, plasma urea-N pool size, urea-N degradation in the gut and urea-N net flux (urea-N synthesis rate) were studied in goats and sheep, with some minor differences detected. The animals were fed either chopped rice straw ad libitum+200 g soybean meal (SBM), or chopped rice straw ad libitum+190 g soybean meal+300 g sago meal (SBM+SM) for 14 days. The supplements were isonitrogenous (80 g crude protein/animal/d). [$^{14}C$]-urea was used as the marker for urea metabolism studies. Two animals from each species were fed either supplement in a cross-over design in two periods. The results showed that rumen pH was significantly (p<0.001) lower in animals fed SBM+SM than those fed SBM supplement. The ammonia concentrations of rumen fluid were significantly (p<0.01) higher in sheep (382.9 mg N/L) than goats (363.1 mg N/L) when fed SBM supplement but lower (282.5 mg N/L) than that of goats (311.0 mg N/L) when fed SBM+SM supplement. Total VFA concentrations were significantly (p<0.05) higher in animals fed SBM+SM supplement than those fed SBM supplement. Goats had significantly (p<0.01) higher molar proportions of acetate (79.1, 77.7%, respectively) than sheep (75.8, 74.0%, respectively) in both supplements. The molar proportion of acetate was significantly (p<0.05) higher, while that of butyrate lower in animals fed SBM supplement than those fed SBM+SM supplement. In animals fed SBM supplement, the molar proportion of propionate was significantly (p<0.01) higher in sheep (18.0%) than in goats (15.6%), but in animals fed SBM+SM, the molar proportion of butyrate was significantly (p<0.01) higher (9.6%) in sheep than in goats (7.2%). Plasma urea-N concentration, plasma urea-N pool size, urea-N degradation in the gut, urea-N net flux and the fraction of urea-C from the blood entering the rumen were not significantly different between goats and sheep fed either supplement. However, PUN concentration was significantly (p<0.05) lower in animals fed SBM+SM supplement (average of 13.8 mg N/100 ml) than in those fed SBM supplement (average of 16.5 mg N/100 ml). The urea net flux was significantly (p<0.05) higher in goats (average of 14.5 g N/d) than sheep (average of 12.9 g N/d), and animals fed SBM supplement showed higher (average of 14.9 g N/d) urea net flux than animals fed SBM+SM supplement (average of 12.9 g N/d). A significant (p<0.05) positive correlation was observed between urea-N net flux and urea-N degradation; urea-N net flux and pool size; urea-N net flux and urea excretion in the urine; and PUN and rumen ammonia in goats. While in sheep, significant (p<0.05) positive correlation was observed between urea-N net flux and urea excretion in the urine; and PUN and rumen ammonia.

Effect of Synchronizing Starch Sources and Protein (NPN) in the Rumen on Feed Intake, Rumen Microbial Fermentation, Nutrient Utilization and Performance of Lactating Dairy Cows

  • Chanjula, P.;Wanapat, M.;Wachirapakorn, C.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1400-1410
    • /
    • 2004
  • Eight crossbred (75% Holstein Friesian) cows in mid-lactation were randomly assigned to a switchback design with a 2x2 factorial arrangement to evaluate two nonstructural carbohydrate (NSC) sources (corn meal and cassava chips) with different rumen degradability and used at two levels of NSC (55 vs. 75%) with protein source (supplied by urea in the concentrate mix). The treatments were 1) Low degradable low level of corn (55%) 2) Low degradable high level of corn (75%) 3) High degradable low level of cassava (55%) and 4) High degradable high level of cassava (75%). The cows were offered the treatment concentrate at a ratio to milk yield at 1:2. Urea-treated rice straw was offered ad libitum as the roughage and supplement with 1 kg/hd/d cassava hay. The results revealed that total DM intake, BW and digestion coefficients of DM were not affected by either level or source of energy. Rumen fermentation parameters; NH3-N, blood urea nitrogen and milk urea nitrogen were unaffected by source of energy, but were dramatically increased by level of NSC. Rumen microorganism populations were not affected (p>0.05) by source of energy, but fungal zoospores were greater for cassava-based concentrate than corn-based concentrate. Milk production and milk composition were not affected significantly by diets containing either source or level of NSC, however concentrate than corn-based concentrate averaging (4.4 and 4.2, respectively). Likewise, income over feed, as estimated from 3.5% FCM, was higher on cassava-based concentrate than corn-based concentrate averaging (54.0 and 51.4 US$/mo, respectively). These results indicate that feeding diets containing either cassava-based diets and/or a higher of oncentrates up to 75% of DM with NPN (supplied by urea up to 4.5% of DM) can be used in dairy rations without altering rumen ecology or animal performance compared with corn-based concentrate.

Effects of rumen-protected amino acid prototypes on rumen fermentation characteristics in vitro

  • Gyeongjin, Kim;Tabita Dameria, Marbun;Jinhyun, Park;Sang Moo, Lee;Hong Gu, Lee;Jun Ok, Moon;Jin Seung, Park;Eun Joong, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.669-679
    • /
    • 2021
  • This study was conducted to evaluate the effects of rumen-protected amino acid (RPAA) prototypes, which were chemically synthesized, on in vitro rumen fermentation and protection rate outcomes. Several RPAA prototypes were incubated with timothy hay and concentrate. Treatments consisted of 1) control (CON; no RPAA prototype supplement), and prototypes of 2) 0.5% RP-methionine (RPMet), 3) 0.5% RP-tryptophan (RPTrp), 4) 0.5% RP-valine (RPVal), 5) 0.5% RP-phenylalanine (RPPhe), 6) 0.5% RP-leucine (RPLeu), 7) 0.5% RP-histidine (RPHis), 8) 20% RPMet, and 9) 20% RPTrp (w·w-1 feed). The inoculum (50 mL) prepared with rumen fluid and McDougall's buffer (1 : 4) was dispensed in individual serum bottles and was anaerobically incubated for 0, 6, and 24 h at 39℃ in triplicate. The dry matter degradability did not differ among the groups, except for the 20% RPMet and the 20% RPTrp treatments at 6 and 24 h. The total volatile fatty acid concentration in the 20% RPMet was higher (p < 0.05) than the rest of the groups at 6 h, and 20% RPMet showed the highest molar proportion of acetate, whereas the lowest proportion of propionate was found at 6 h (p < 0.05). The protection rate of the RPAA prototypes ranged from 29.85 to 109.21%. at 24 h. In conclusion, the chemically synthesized RPAA prototypes studied here had no detrimental effects on rumen fermentation parameters. Further studies using animal models are needed for more accurate evaluations of the effectiveness of RPAA.