• Title/Summary/Keyword: Rumen Microbial N

Search Result 155, Processing Time 0.028 seconds

Effects of Sago Palm Pith as Replacement for Corn Grain on Intake, Rumen Fermentation Characteristics and Microbial N Supply of Cattle Fed Paspalum plicatulum Hay

  • Chanjula, P.;Ngampongsai, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.378-387
    • /
    • 2009
  • To investigate the effects of sago palm pith (SPP) substitution of corn in the diets on intake, digestibility, rumen fermentation characteristics, nitrogen balance and microbial N Supply, five ruminally fistulated Southern indigenous cattle (mean initial BW = 226${\pm}$5 kg) were randomly assigned to a 5${\times}$5 Latin Square Design to receive five diets, $T_1$ = concentrate with 0% SPP, $T_2$ = 25% SPP, $T_3$ = 50% SPP, $T_4$ = 75% SPP and $T_5$ = 100% SPP, of dietary dry matter, respectively. Plicatulum hay (PH) was offered ad libitum as the roughage. A metabolism trial lasted for 21 days during which liveweight changes and feed intakes were measured. Based on this experiment, there were no significant differences (p>0.05) among treatments groups regarding total DM intake (OMI, NDFI and ADFI) and digestion coefficients of nutrients (DM, OM, CP, NDF and ADF), while total DM intake (% BW) was significantly (p<0.05) higher as higher levels of SPP were incorporated into diets. Rumen parameters (ruminal temperature, pH, glucose, packed cell volume, volatile fatty acid and rumen microorganism populations) were similar among treatments (p>0.05), whereas $NH_3-N$, blood urea nitrogen and molar proportion of propionate concentrations were significantly (p<0.05) higher as higher levels of SPP were incorporated into diets. The amount of N absorption, N retention and microbial protein synthesis were similar among treatments. These results indicate that SPP can be included in diets for Southern indigenous cattle to supply up to 100% of supplemental corn when fed with PH without negative impact on animal performance and it was a good approach in exploiting the use of local feed resources for beef cattle production.

Effect of Protein Sources on Rumen Microbial Protein Synthesis Using Rumen Simulated Continuous Culture System

  • Joo, J.W.;Bae, G.S.;Min, W.K.;Choi, H.S.;Maeng, W.J.;Chung, Y.H.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.326-331
    • /
    • 2005
  • A rumen simulated continuous culture (RSCC) system was used to study the influence of supplementation of the three different types of protein sources such as urea, casein and soy protein on rumen microbial synthesis in terms of rumen microbial synchronization. The urea treatment showed the highest pH value. Ammonia nitrogen concentration was rapidly increased after feeding and not significantly different in the urea treatment (13.53 mg/100 ml). Protozoa numbers were not significantly different for soy protein and casein treatment compared to urea treatments during incubation. The average concentration of total VFA (mMol) was not detected with significant difference among treatments, but iso-butyrate production showed the highest for soy protein treatment among treatments (p<0.001). The lowest concentration in total iso-acids (iso-butyrate and iso-valerate) production was observed in urea treatment. The soy protein treatment showed no significantly change in acetate/propionate. The amounts of dry matter (DM) out flow showed no significant difference among treatments. Organic matter (OM) flow was the highest for urea treatments and the lowest for casein treatment (p<0.03). The nitrogen flow for casein treatment was not significantly different from other treatments. The efficiency of microbial protein synthesis in terms of microbial nitrogen (MN) synthesis (g MN/kg ADOM) digested in the rumen was highest for casein treatment (58.53 g MN/kg ADOM) compared to soy protein and urea (p<0.05). This result suggests that rumen ammonia releasing rate may influence on microbial protein synthesis in the rumen.

Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats

  • Singh, B.;Chaudhary, L.C.;Agarwal, N.;Kamra, D.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.810-817
    • /
    • 2011
  • A feeding trial was conducted to study the effect of tannin rich Pakar (Ficus infectoria) leaves on microbial profile, rumen fermentation and nutrient utilization in goats. Eight goats divided in two groups were fed pakar leaves (experimental group) and green oats (control group) as sole roughage source along with a fixed quantity of concentrate mixture for a period of 3 months. Two metabolic trials of six days duration were conducted after 30 and 90 days of experimental feeding. The dry matter intake was significantly higher (p<0.05) and digestibility's of DM, OM, CP, EE, NDF and ADF were reduced in experimental as compared with the control group. The TDN intake was similar (236.52 vs. 240.39 g/d) in both the groups. All the animals were in positive nitrogen balance. The concentration of ammonia nitrogen, TVFA, lactic acid and activities of xylanase and protease were reduced in pakar leaves fed goats. The rumen microbial profile as obtained by MPN technique showed no change in total bacterial population but total fungi and cellulolytic bacteria were reduced (p<0.05), whereas, tannin degrading/tolerant bacteria increased with the feeding of pakar leaves. Real time PCR data revealed a decrease in Ruminococcus flavefaciens, an increase in methanogens and no change in the Fibrobacter succinogenes population by feeding of pakar leaves.

Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw

  • Nguyen, Thien Truong Giang;Wanapat, Metha;Phesatcha, Kampanat;Kang, Sungchhang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • Objective: Leucaena leucocephala (Leucaena) is a perennial tropical legume that can be directly grazed or harvested and offered to ruminants as hay, silage, or fresh. However, Leucaena contain phenolic compounds, which are considered anti-nutritional factors as these may reduce intake, digestibility and thus animal performance. Therefore, the objective of this experiment was to determine effects of Leucaena silage (LS) feeding levels on rumen microbial populations, N-balance and microbial protein synthesis in dairy steers. Methods: Four, rumen fistulated dairy steers with initial weight of $167{\pm}12kg$ were randomly assigned to receive dietary treatments according to a $4{\times}4$ Latin square design. Treatments were as followings: T1 = untreated rice straw (RS; Control), T2 = 70% RS+30% LS, T3 = 40% RS+60% LS, and T4 = 100% LS. Dairy steers were fed rice straw and LS ad libitum and supplemented with concentrate at 0.2% of body weight/d. Results: Results revealed that the rumen microbial population, especially cellulolytic, proteolytic bacteria and fungal zoospores were enhanced in steers that received 60% of LS (p<0.05), whereas the amylolytic bacteria population was not affected by treatments (p>0.05). Protozoal population was linearly decreased with increasing level of LS (p<0.05). Moreover, N-balance and microbial protein synthesis were enhanced by LS feeding (p<0.05) and were the highest in 60% LS group. Conclusion: Based on this study, it could be concluded that replacement of RS with 60% LS significantly improved microbial population and microbial protein synthesis in diary steers.

Influence of β 1-4 Galacto-oligosaccharides Supplementation on Nitrogen Utilization, Rumen Fermentation, and Microbial Nitrogen Supply in Dairy Cows Fed Silage

  • Santoso, B.;Kume, S.;Nonaka, K.;Gamo, Y.;Kimura, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1137-1142
    • /
    • 2003
  • In a balanced incomplete block design, two dry Holstein cows were used to investigate the effect of $\beta$ 1-4 galactooligosaccharides (GOS) supplementation on nitrogen (N) utilization, rumen fermentation and microbial N supply in the rumen. During the experiment, cows were fed four diets: orchardgrass (Dactylis glomerata L.) silage (OS), OS with GOS supplementation (OSG), OS mixed with alfalfa (Medicago sativa L.) silage (MS) and MS with GOS supplementation (MSG). GOS was supplemented at 2% of dry matter intake. Diets were fed at maintenance level of protein and energy. Results showed that N digestion was affected by silage and interaction of silage and GOS supplementation. Cows fed OSG had the highest N digested (p<0.05) followed by MS, OS and MSG. Supplementation of GOS to OS or MS diets tended to improve N utilization through reducing the N losses on dairy cows. There was no effect of GOS supplementation on rumen fermentation parameters (i.e. pH, $NH_3$-N and total VFA) at 1 h and 6 h after feeding. Compared to cows fed MS, cows fed OS silage had higher (p<0.05) allantoin excretion (80.8 vs. 67.1 mmol/d) and higher (p<0.05) total purine derivatives excretion (92.9 vs. 78.5 mmol/d). The microbial N supply in cows fed OSG was higher (p<0.05) than those fed OS, MS and MSG.

Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep

  • Wina, Elizabeth;Muetzel, Stefan;Becker, Klaus
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1580-1587
    • /
    • 2006
  • Several researchers have demonstrated that the rumen microbial community rapidly adapts to saponins and proposed interval feeding to prevent this rapid adaptation. An in vivo experiment was carried out to examine the effect of daily versus application every third day (interval feeding) of Sapindus rarak saponins (SE) on rumen fermentation end products, protozoal counts and nutrient digestibility. Thirty sheep were allocated into 5 groups. Sheep were fed daily or every third day with two levels of SE (0.48 and 0.72 g/kg body mass). One group received no saponin and served as control. All sheep received the same diet, a mixture of elephant grass and wheat pollard (65:35 w/w). Independent of the feeding regime and the level of inclusion, the addition of SE decreased protozoal counts and rumen ammonia concentrations (p<0.01). Microbial N supply and N retention were not affected by the high feeding regime. Daily feeding negatively influenced rumen xylanase and cellulase activity, but only when the high level of saponins was fed. However, these negative effects on rumen cell wall degradation were not reflected in decreasing total tract digestibility of the organic matter or the plant cell walls. Our results show that rumen microorganisms do not rapidly adapt to S. rarak saponins.

INFLUENCE OF AMINO ACID SUPPLEMENTS TO A STRAW-MAIZE-BASED UREA DIET ON DUODENAL DIGESTA FLOW AND DIGESTION IN SHEEP

  • Fujimaki, T.;Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.137-145
    • /
    • 1994
  • Amino acid (AA) substituted diets had no influence on rumen levels of total volatile fatty acids (VFA), ammonia and ${\alpha}$-amino-N, but tended to increase molar proportions of isovalerate and counts of total viable AA utilizing and celluloytic bacteria in the rumen as compared with the control urea diet. The AA diets did not affect daily flow to the duodenum of dry matter (DM), organic mater (OM) and acid detergent fibre (ADF), and rumen digestibility of these nutrients. However, the AA diets, in particular the 10 essential AA (EAA) diet improved total digestibility of DM, OM and ADF by decreasing faecal output of these fractions. Although N flow to the duodenum and N retention were not affected with the dietary treatments, duodenal bacterial flow appeared to increase by the AA diets when it was estimated by means of 2,6-diaminopimelic acid (DAP) and nucleic acid-purine bases (PB) as markers. The results suggest that AA supplements to a urea diet could improve feed utilization by stimulating microbial activity and proliferation in the rumen but and increased microbial activity per se is not necessarily associated with improvement of feed conversion.

Increasing the Flow of Protein from Ruminal Fermentation - Review -

  • Wallace, R.J.;Newbold, C.J.;Bequette, B.J.;MacRae, J.C.;Lobley, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.885-893
    • /
    • 2001
  • This review summarizes some recent research into ways of improving the productivity of ruminal fermentation by increasing protein flow from the rumen and decreasing the breakdown of protein that results from the action of ruminal microorganisms. Proteinases derived from the plant seem to be of importance to the overall process of proteolysis in grazing animals. Thus, altering the expression of proteinases in grasses may be a way of improving their nutritive value for ruminants. Inhibiting rumen microbial activity in ammonia formation remains an important objective: new ways of inhibiting peptide and amino acid breakdown are described. Rumen protozoa cause much of the bacterial protein turnover which occurs in the rumen. The major impact of defaunation on N recycling in the sheep rumen is described. Alternatively, if the efficiency of microbial protein synthesis can be increased by judicious addition of certain individual amino acids, protein flow from ruminal fermentation may be increased. Proline may be a key amino acid for non-cellulolytic bacteria, while phenylalanine is important for cellulolytic species. Inhibiting rumen wall tissue breakdown appears to be an important mechanism by which the antibiotic, flavomycin, improves N retention in ruminants. A role for Fusobacterium necrophorum seems likely, and alternative methods for its regulation are required, since growth-promoting antibiotics will soon be banned in many countries.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

Effects of various weaning times on growth performance, rumen fermentation and microbial population of yellow cattle calves

  • Mao, Huiling;Xia, Yuefeng;Tu, Yan;Wang, Chong;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1557-1562
    • /
    • 2017
  • Objective: This study was conducted to investigate the effects of weaning times on the growth performance, rumen fermentation and microbial communities of yellow cattle calves. Methods: Eighteen calves were assigned to a conventional management group that was normally weaned (NW, n = 3) or to early weaned (EW) group where calves were weaned when the feed intake of solid feed (starter) reached 500 g ($EW_{500}$, n = 5), 750 g ($EW_{750}$, n = 5), or 1,000 g ($EW_{1,000}$, n = 5). Results: Compared with NW, the EW treatments increased average daily gain (p<0.05). The calves in $EW_{750}$ had a higher (p<0.05) starter intake than those in $EW_{1,000}$ from wk 9 to the end of the trial. The concentrations of total volatile fatty acids in $EW_{750}$ were greater than in NW and $EW_{1,000}$ (p<0.05). The EW treatments decreased the percentage of acetate (p<0.05). The endogenous enzyme activities of the rumen were increased by EW (p<0.05). EW had no effect on the number of total bacteria (p>0.05), but changes in bacterial composition were found. Conclusion: From the present study, it is inferred that EW is beneficial for rumen fermentation, and weaning when the feed intake of the starter reached 750 g showed much better results.