• 제목/요약/키워드: Rumen Microbial N

검색결과 155건 처리시간 0.024초

Effect of Intraruminal Sucrose Infusion on Volatile Fatty Acid Production and Microbial Protein Synthesis in Sheep

  • Kim, K.H.;Lee, S.S.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권3호
    • /
    • pp.350-353
    • /
    • 2005
  • Effects of sucrose supplement on the pattern of VFA production and microbial protein synthesis in the rumen were examined in sheep consuming basal diet of grass silage (2.5 kg fresh wt/d) that was provided in 24 equal meals each day by an automatic feeder. Four mature wethers were allocated to four experimental treatments in a 4${\times}$4 Latin square design with periods lasting 14 days. The treatments were (1) the basal diet, (2) supplemented with 150 g sucrose and 7.0 g urea, (3) 300 g sucrose and 13 g urea, and (4) 450 g sucrose and 20 g urea given as a continuous intraruminal infusion for 24 h. All infusions were given in 2 litres of aqueous solution per day using a peristaltic pump. The effect of sucrose level on rumen mean pH was significantly linear (p<0.01). There were not significant differences in the concentration of ammonia-N, total VFA and the molar proportions of acetate, propionate and butyrate with the level of sucrose infusion. The molar proportions of isobutyric acid (p<0.05) and isovaleric acid (p<0.001) were significantly reduced when the infused amount of sucrose was increased. The flow of microbial N was linearly (p<0.001) increased with sucrose and urea level. High levels of readily fermentable carbohydrate in a ration reduced the efficiency of microbial protein synthesis in the rumen. It was demonstrated that of the individual fatty acids, only the molar proportion of isovalerate showed a significant negative correlation (R2=$0.3501^{**}$) with the amount of microbial N produced and a significant positive correlation (R2=$0.2735^{**}$) with the efficiency of microbial growth.

DETERMINATION OF PURINE AND PYRIMIDINE BASES IN RUMEN MICRO-ORGANISMS BY REVERSED PHASE HPLC AFTER HYDROLYTIC DIGESTION UNDER PRESSURE

  • Han, Y.K.;Landis, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권2호
    • /
    • pp.161-164
    • /
    • 1991
  • A rapid and accurate method is described for the determination of nucleo-bases in rumen micro-organisms. A procedure to satisfactorily hydrolyse the micro-organisms involving reaction with a mixture of readily volatile organic acids (acetic and formic acids) under high pressure, is proposed, and optimal conditions for an analytical procedure with reversed phase HPLC is described. The following nucleobases contents (mmol/kg DM) of rumen micro-organisms were found: Adenine (Ade), 82.62; Guanine (Gua), 61.34; Cytosine (Cyt), 84.61; Thymine (Thy), 35.74; Uracil (Ura), 68.62; Hypoxanthine (Hxn), 13.06; Xanthine (Xn), 8.35. Total purine-N content (g/kg N) of rumen micro-organisms were 99.60. The nucleic acid N content (g/kg N) of microbial isolates were: RNA-N, 109.9; DNA-N, 50.9.

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Effects of Aspergillus Oryzae Culture and 2-Hydroxy-4-(Methylthio)-Butanoic Acid on In vitro Rumen Fermentation and Microbial Populations between Different Roughage Sources

  • Sun, H.;Wu, Y.M.;Wang, Y.M.;Liu, J.X.;Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권9호
    • /
    • pp.1285-1292
    • /
    • 2014
  • An in vitro experiment was conducted to evaluate the effects of Aspergillus oryzae culture (AOC) and 2-hydroxy-4-(methylthio)-butanoic acid (HMB) on rumen fermentation and microbial populations between different roughage sources. Two roughage sources (Chinese wild rye [CWR] vs corn silage [CS]) were assigned in a $2{\times}3$ factorial arrangement with HMB (0 or 15 mg) and AOC (0, 3, or 6 mg). Gas production (GP), microbial protein (MCP) and total volatile fatty acid (VFA) were increased in response to addition of HMB and AOC (p<0.01) for the two roughages. The HMB and AOC showed inconsistent effects on ammonia-N with different substrates. For CWR, neither HMB nor AOC had significant effect on molar proportion of individual VFA. For CS, acetate was increased (p = 0.02) and butyrate was decreased (p<0.01) by adding HMB and AOC. Increase of propionate was only occurred with AOC (p<0.01). Populations of protozoa ($p{\leq}0.03$) and fungi ($p{\leq}0.02$) of CWR were differently influenced by HMB and AOC. Percentages of F. succinogenes, R. albus, and R. flavefaciens (p<0.01) increased when AOC was added to CWR. For CS, HMB decreased the protozoa population (p = 0.01) and increased the populations of F. succinogenes and R. albus ($p{\leq}0.03$). Populations of fungi, F. succinogenes (p = 0.02) and R. flavefacien (p = 0.03) were increased by adding AOC. The HMB${\times}$AOC interactions were noted in MCP, fungi and R. flavefacien for CWR and GP, ammonia-N, MCP, total VFA, propionate, acetate/propionate (A/P) and R. albus for CS. It is inferred that addition of HMB and AOC could influence rumen fermentation of forages by increasing the number of rumen microbes.

THE EFFECT OF RICE STRAW-POULTRY MANURE SILAGE AND BARLEY ON THE NITROGEN DIGESTION AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF SHEEP

  • Lee, Nam-Hyung;Yoon, Chil-Surk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제2권4호
    • /
    • pp.615-623
    • /
    • 1989
  • Three sheep fitted with rumen cannulae and abomasal cannulae were given daily 750 g (DM) of three diets consisting of straw-manure silage and barley mixture in the ratios of 75:25, 50:50 and 25:75. As the proportion of barley in the diet increased, there was an increase in the amount of OM apparently digested in the rumen and thole tract (P<.01). But ADF digestion was decreased. For the 25:75 diet the $NH_3-N$ content in the rumen showed the highest value, but the total VFA was the lowest. The rumen volume and dilution rate increased with increasing ratio of silage in diets. There were no significant differences between diets in abomasal NAN flow, and the bacterial-N for the 25:75 diet was 7.3 g N as compared with 9.2-9.6 g N for the other diets (P<.01). Rates of bacterial nitrogen synthesis in the rumen were 30.5, 24.1 and 14.9 g N per Kg OM apparently digested in the rumen for the 75:25, 50:50 and 25:75 diets, respectively.

MICROBIAL COLONISATION AND DEGRADATION OF SOME FIBROUS CROP RESIDUES IN THE RUMEN OF GOATS

  • Ho, Y.W.;Abdullah, N.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권5호
    • /
    • pp.519-524
    • /
    • 1996
  • An investigation was carried out to study the microbial colonization and degradation of five crop residues, viz., sago waste, rice straw, oil palm trunk shavings, untreated palm press fibre and palm press fibre teated with 3% ammonium hydroxide in the rumen of goats. Colonisation by rumen bacteria and fungi was already established on all the five crop residues 8 h after incubation. However, the extent of colonization varied among the crop residues. Microbial colonization was poor on palm press fibre (treated and untreated) but more extensive on sago waste, oil palm trunk shavings and rice straw. By 24 h, most of the soft-walled tissues in sago waste, rice straw and oil palm trunk shavings were degraded leaving the thick-walled tissues extensively colonized by bacteria and fungi. Degradation on palm press fibre was still limited. At 48 h, the thick-walled tissues of sago waste, oil palm trunk shavings and rice straw showed various degrees of degradation - from small erosion zones to large digested areas. Bacterial growth was similar to that at 24 h but fungal growth was less. On palm press fibre, microbial colonization was more extensive than at 24 h but degradation of the fibres was still limited. Degradation of all the five crop residues at 72 h was somewhat similar to that at 48 h. Overall, microbial colonization and degradation were the most extensive on sago waste, followed by rice straw and oil palm trunk shavings, and the least on palm press fibre (treated and untreated). Dry matter loss of the five crop residues at the various incubation periods also showed the same order of degradation.

지방첨가원에 따른 젖소의 반추위 발효성상 미생물 합성 효율 및 영양소 소화율 영향 연구 (Effects of Different Fat Sources on Fermentative Characteristics and Microbial Efficiency in the Rumen, and Nutrients Digestibility of Dairy Cows)

  • 최낙진;맹원재;김현진;이홍구;하종규
    • Journal of Animal Science and Technology
    • /
    • 제46권3호
    • /
    • pp.347-354
    • /
    • 2004
  • 사료 지방의 종류에 따른 반추위 내 발효성상, 미생물 합성 효율 및 영양소 소화율을 조사하기 위하여 반추위와 십이지장에 누관이 설치된 4마리의 홀스타인 젖소를 4 ${\times}$ 4 라틴 방각법 대사실험을 수행하였다. 공시축들은 조사료 60% 및 농후사료 40% 비율의 완전혼합사료 형태로 급여하였다. 농후사료 내 지방원으로써 Megalac(MEG), 포름알데히드 처리 아마 종실(LIN), 어유와 포름알데히드 처리 아마종실 혼합(MIX; 50 : 50, oil basis), 그리고 농후사료 내 지방을 첨가하지 않고 아마유를 십이지장에 하루 500g 주입한 것(OIL)을 포함하여 총 4개의 처리구를 두었다. 반추위 pH는 OIL 처리구에서 가장 낮았으나(P < 0.05), Ammonia N 농도는 처리구들간 통계적 유의차가 없었다. Total VFA, acetate, propionate, iso-butyrate 및 iso-valerate 농도 또한 처리구들간 통계적 유의차이가 없었다. 반면에 butyrate와 valerate는 OIL 처리구에서 가장 높았고, MEG 처리구에서 가장 낮았다(P < 0.05). DM, OM, NDF 및 ADF 섭취량은 OIL 처리구에서 가장 낮았다(P < 0.01). 그러나, 십이지장으로의 영양소들의 flow, 반추위와 전장 소화율은 처리구들간에 통계적 유의차이가 없었다. 질소 (N) 섭취량은 OIL 처리구에서 가장 낮았다(P < 0.01). 십이지장으로의 total N, nonammonia N 및 microbial N flow는 처리구들간 통계적 유의차이가 없었다. 그리고, 미생물합성효율, ammonia N 및 total N의 반추위 및 전장 소화율 또한 처리구들간에 통계적 유의차이가 없었다. 따라서, 본 실험결과는 사료 내 6% 정도의 지방원료 첨가는 형태와 종류에 상관없이 반추위 발효성상, 미생물 합성 효율, 반추위 및 전장 내 영양소 이용효율을 감소 시키지 않음을 나타내고 있다.

Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

  • Wang, W.J.;Yang, W.R.;Wang, Y.;Song, E.L.;Liu, X.M.;Wan, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권1호
    • /
    • pp.72-81
    • /
    • 2013
  • Four Luxi beef cattle ($400{\pm}10$ kg) fitted with ruminal, duodenal and ileal cannulas were used in a $4{\times}4$ Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01) and quadratically (p<0.01) increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029) by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA). Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05), while Streptococcus bovis populations were linearly (p = 0.049) and quadratically (p = 0.020) decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05) increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01) and quadratically (p<0.01) increased by infusing SSP. The flow of total amino acids (AA), essential amino acids (EAA) and individual amino acids were linearly (p<0.01) and quadratically (p<0.01) increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033) increased and apparent degradability of Arginine was linearly (p = 0.032) and quadratically (p = 0.042) increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.

Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet

  • Khateri, N.;Azizi, O.;Jahani-Azizabadi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권3호
    • /
    • pp.370-378
    • /
    • 2017
  • Objective: An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO), containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods: Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control), 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results: Ruminal pH, total volatile fatty acids (VFA) concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05) compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05) in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP) bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion:The results of the present study suggested that supplementation of MEO may have limited effects on apparent nutrient digestibility, ruminal fermentation and protozoa and HAP bacteria count, blood cells and metabolites.

Dragon fruit (Hylocereus undatus) peel pellet as a rumen enhancer in Holstein crossbred bulls

  • Matra, Maharach;Totakul, Pajaree;Viennasay, Bounnaxay;Phesatcha, Burarat;Wanapat, Metha
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.594-602
    • /
    • 2021
  • Objective: An experiment was conducted to assess the effect of dragon fruit peel pellet (DFPP) as a rumen enhancer of dry matter consumption, nutrient digestibilities, ruminal ecology, microbial protein synthesis and rumimal methane production in Holstein crossbred bulls. Methods: Four animals, with an average live-weight of 200±20 kg were randomly assigned in a 4×4 Latin square design to investigate the influence of DFPP supplementation. There were four different dietary treatments: without DFPP, and with 200, 300, and 400 g/h/d, respectively. Results: Results revealed that dry matter consumption of total intake, rice straw and concentrate were not significantly different among treatments (p>0.05). It was also found that ruminal pH was not different among treatments (p>0.05), whilst protozoal group was reduced when DFPP increased (p<0.01). Blood urea nitrogen and NH3-N concentrations were increased at 400 g of DFPP supplementation (p<0.01). Additionally, volatile fatty acid production of propionate was significantly enhanced by the DFPP supplementation (p<0.05), while production of methane was consequently decreased (p<0.05). Furthermore, microbial protein synthesis and urinary purine derivatives were remarkably increased especially at 400 g of DFPP supplementation (p<0.05). Conclusion: Plant secondary compounds or phytonutrients (PTN) containing saponins (SP) and condensed tannins (CT) have been reported to influence rumen fermentation. DFPP contains both CT and SP as a PTN. The addition of 400 g of DFPP resulted in improved rumen fermentation end-products especially propionate (C3) and microbial protein synthesis. Therefore, DFPP is a promising rumen enhancer and indicated a significant potential of DFPP as feedstuff for ruminant feed to mitigate rumen methane production.