• Title/Summary/Keyword: Rumen Microbial N

Search Result 155, Processing Time 0.023 seconds

Effect of Fermented Brown Seaweed Waste (FBSW) on in vitro Rumen Microbial Fermentation (발효 미역부산물이 반추위 발효특성에 미치는 영향)

  • Hong, Zhong-Shan;Lee, Hong-Gu;Lee, Zhe-Hu;Jin, Yong-Cheng;Lee, Sang-Bum;Kang, Han-Suck;Choi, Yun-Jaie
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.349-356
    • /
    • 2011
  • This study was conducted to investigate the effects of brown seaweed waste (BSW) fermented with DS-01 microbe on in vitro rumen microbial fermentation. In in vitro trial, three different diets supplemented with 2%, 4%, 6% BSW fermented with DS-01 either for one month or two months was tested at 3 h, 6 h, 9 h, 12 h, and 24 h incubation. The chemical composition (CP, EE, CF, and ash) between brown seaweed waste (BSW) and fermented BSW (FBSW) were not different. The contamination of pathogenic microbes was not detected in FBSW. The pH value tended to be higher with 6% level of supplementation of FBSW for one month than other treatments. The pH at 24 h was significantly higher in FBSW than that of treatments without FBSW (p<0.05). In FBSW for two months, the pH value in 6% FBSW at 3 h in vitro fermentation tended to be higher than 2% or 4% FBSW treatments (p=0.0540), but there were no differences in other fermentation times. Although the concentration of $NH_3$-N of BSW fermented for one month was higher than control at 3 h (p<0.05), the volatile fatty acid values were significantly increased in 4 and 6% FBSW fermented for one month at 6 h incubation (p<0.05). In BSW fermented for two months, the volatile fatty acid values were significantly decreased in 6% treatment at 9 h (p<0.05). As a result of in vitro trial, it was recommended that the 2~4% supplementation level of brown seaweed waste fermented with DS-01 microbe for two months could be utilized for in vivo trial in ruminants.

Effects of Momordica charantia Saponins on In vitro Ruminal Fermentation and Microbial Population

  • Kang, Jinhe;Zeng, Bo;Tang, Shaoxun;Wang, Min;Han, Xuefeng;Zhou, Chuanshe;Yan, Qiongxian;He, Zhixiong;Liu, Jinfu;Tan, Zhiliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.500-508
    • /
    • 2016
  • This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, $NH_3-N$, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 ($FRD_0$) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production ($V_F$) and the half-life ($t_{0.5}$) compared with the control. The $NH_3-N$ concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the ability to modulate the ruminal fermentation pattern by regulating the number of functional rumen microbes including cellulolytic bacteria and fungi populations, and may have potential as a feed additive applied in the diets of ruminants.

An Evaluation of Condensed Molasses Solubles (CMS) as a Source of Nitrogen for Ruminal Microbes In Vitro (반추위 미생물의 질소공급원으로서 Condensed Molasses Solubles (CMS)의 사료 가치 평가)

  • Yeo, J.M.;Kim, C.H.;Lee, J.H.;Nho, W.G.;Lee, S.H.;Kim, W.Y.
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.513-520
    • /
    • 2006
  • A series of four in vitro experiments were conducted to evaluate condensed molasses solubles (CMS) as a source of nitrogen for ruminal microbes. In experiment 1, as compared with urea, the value of CMS as a nitrogen source was examined. In experiment 2, to determine the time needed for maximal response of microbial synthesis, the treatments were incubated for increasing times (from 6 h to 16 h). Because a sediment that was assumed to cause nitrogen loss was found after incubation in experiments 1 and 2, it was decided to avoid formation of sediment using sugar instead of molasses or a shorter time incubation (experiments 3 and 4). Furthermore, in experiment 4, because the extent to which ammonia nitrogen is released from CMS and urea before 6 h of incubation was uncertain, it was decided to examine the peaks of concentrations of ammonia nitrogen released from CMS and urea by sampling after 2 h incubation. There was no significant difference in the concentration of microbial-N between molasses/CMS and molasses/ urea treatments in experiment 1, although there were greater decreases in ammonia concentration with the molasses/CMS treatment. The microbial protein synthesis was increased progressively until 10 h for both treatments (experiment 2). Although ingredients that were completely soluble (sucrose, urea) were used in experiment 3, the sediment was still evident suggesting that the sediment was largely of microbial not feed origin. Ammonia release from CMS was much faster than from urea during 2 h incubation. In conclusion, the results of the present studies suggest that the feed value of CMS as a source of nitrogen for ruminal bacteria was similar to that of urea when it was estimated in vitro.

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

Screening of $\alpha$-amylase and $\alpha$-glucosidase Inhibitors from Brazilian Plant Extracts for Treatment of Rumen Acidosis (100종 브라질 식물 추출물로부터 반추동물 산독증 예방치료를 위한 $\alpha$-amylase 및 $\alpha$-glucosidase 저해제의 선별)

  • Kim, Mi-Sun;An, Seon-Mi;Jung, In-Chang;Kwon, Gi-Seok;Sohn, Ho-Yong
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.290-296
    • /
    • 2010
  • To develop anti-acidosis and anti-diabetes agentsfrom natural products, the inhibitory activities of Brazilian plant extracts against microbial $\alpha$-amylase and $\alpha$-glucosidase were evaluated. Among 100 different ethanol extracts tested, those of Acacia jurema Mart., Anacardium humile A. St.-Hil., Cedrela odorata L., and Guazuma ulmifolia Lam showed good inhibitoryactivities toward both enzymes. In addition, an extract of Plumeria drastica Mart. showed specific inhibition of $\alpha$-amylase, whereas that of Eugenia uniflora L. demonstrated strong inhibition of the enzyme. IC50 values of $\alpha$-amylase inhibition suggested that the extract of A. humile A. St.-Hil., which has been used as an anti-diabetes medicine in Brazil, had potent inhibitory activity. The IC50 for the A. humile A. St.-Hil. extract ($91.2{\mu}g/mL$) was similar to that of acarbose ($50.5{\mu}g/mL$). This activity of A. humile A. St.-Hil. was not reduced by heat or acid treatment. Moreover, treatment with HCl (0.01 M) for 1 h increased the inhibitory activity from 57.5% to 81.2%. Also, the extract did not cause hemolysis of human red blood cells at levels up to 1 mg/mL. The results indicate that the extract of A. humile A. St.-Hil. is potentially useful as an anti-acidosis and anti-diabetes agent.