• 제목/요약/키워드: Rumen Microbial Growth

검색결과 74건 처리시간 0.025초

Study on Supplementing Effects or Feeding Systems of Molasses and Urea on Methane and Microbial Nitrogen Production in the Rumen and Growth Performances of Bulls Fed a Straw Diet

  • Huque, K.S.;Chowdhury, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권1호
    • /
    • pp.35-46
    • /
    • 1997
  • An experiment with growing bulls were conducted to determine the effect of supplementation of a straw (S) with 15% molasses and 3% urea as an intimate mix (UMS) on its dry matter (DM) intake and digestibility (DMD) and reduction of methane ($CH_4$) production from fermentation in vitro of the straw. In the next experiment, the feeding of the UMS was compared with that of the feeding of molasses and urea in meals (DS) or in lick blocks (DSUMB) as supplements to straw. The UMS feeding increased daily intake of straw DM ($89.5 g{\cdot}kgW^{-0.75}$, p < 0.01) and digestible crude protein (DCP 333 g, p < 0.001) and nitrogen (N) balances ($508mg{\cdot}kgW^{-0.75}{\cdot}d^{-1}$, p < 0.01) of the bulls than the feeding of 'S' ($65g{\cdot}kgW^{-0.75}$, 55 g and $8.0mg{\cdot}kgW^{-0.75}{\cdot}d^{-1}$, respectively). It also increased the digestibility of DM ($594g{\cdot}kg^{-1}$, p < 0.05), organic matter (OM, $641g{\cdot}kg^{-1}$, p < 0.05), CP ($619g{\cdot}kg^{-1}$, p < 0.001) and acid detergent fibre (ADF, 773, p < 0.05). The $CH_4$ emitted per g of DOM apparently fermented in the rumen (DOMR) was 91.0 ml in the 'S' and reduced (p < 0.05) to 61.6 ml in the UMS. The feeding of the UMS when compared with that of the DS or DSUMB also gave a higher straw intake (1.77% of live weight, LW, p <0.01) and ADF digestibility ($516g{\cdot}kg^{-1}$, p < 0.05) than the other diets (1.52% or 1.55% LW and 472 or $490g{\cdot}kg^{-1}$, respectively) in association with the increased microbial N yield in the rumen (14.1, 5.62 or $17.0g{\cdot}kg^{-1}$ DOMR, respectively, p < 0.05), daily LW gains (233, 125 or 93 g, respectively, p < 0.05) and feed conversion ratios of the diets (26.0, 56.1, or 57.6 g feed/g LW gain, p > 0.05, respectively). It can be concluded that molasses and urea feeding as an intimate mix with straw (UMS) increased its digestion and intake in association with a reduced methane emissions in the rumen. When compared with that of their feeding in meals or in lick blocks as supplements to straw the UMS gave the highest straw in take and digestion and live weight gains of growing bulls concurring the finding that the UMS system may be the best way of molasses and urea feeding to ruminants fed straws.

The Requirement of Ruminal Degradable Protein for Non-Structural Carbohydrate-Fermenting Microbes and Its Reaction with Dilution Rate in Continuous Culture

  • Meng, Q.X.;Xia, Z.G.;Kerley, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권10호
    • /
    • pp.1399-1406
    • /
    • 2000
  • A continuous culture study was conducted to determine the impact of ruminal degradable soy protein (S-RDP) level and dilution rate (D) on growth of ruminal non-structural carbohydrate-fermenting microbes. Corn starch, urea and isolated soy protein (ISP) were used to formulate three diets with S-RDP levels of 0, 35 and 70% of total dietary CP. Two Ds were 0.03 and $0.06h^{-1}$ of the fermenter volume in a single-effluent continuous culture system. As S-RDP levels increased, digestibilities of dietary dry matter (DM), organic matter (OM) and crude protein (CP) linearly (p=0.001) decreased, whereas digestion of dietary starch linearly (p=0.001) increased. Increasing D from 0.03 to $0.06h^{-1}$ resulted in decreased digestibilities of dietary DM and OM, but had no effect on digestibilities of dietary starch (p=0.77) and CP (p=0.103). Fermenter pH, the concentration of volatile fatty acids (VFA) and daily VFA production were unaffected (p=0.159-0.517) by S-RDP levels. Molar percentages of acetate, propionate and butyrate were greatly affected by S-RDP levels (p=0.016-0.091), but unaffected by D (p=0.331-0.442). With increasing S-RDP levels and D, daily bacterial counts, daily microbial N production (DMNP) and microbial efficiency (MOEFF; grams of microbial N produced per kilogram of OM truly digested) were enhanced (p=0.001). The increased microbial efficiency with increasing S-RDP levels is probably the result of peptides or amino acids that served as a stimulus for optimal protein synthesis. The quantity of ruminal degradable protein from soy proteins required for optimum protein synthesis of non-structural carbohydrate-fermenting microbes appears to be equivalent to 9.5% of dietary fermented OM.

Organic acids 의 첨가가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향 (Effects of Organic Acids on In Vitro Ruminal Fermentation Characteristics and Methane Emission)

  • 옥지운;하동욱;이신자;김언태;이상석;오영균;김경훈;이성실
    • 생명과학회지
    • /
    • 제22권10호
    • /
    • pp.1324-1329
    • /
    • 2012
  • 본 연구의 목적은 organic acids를 첨가하여 in vitro 상의 반추위 발효성상과 반추위 내 메탄 억제에 미치는 영향에 대한 효과를 알아보고자 하였다. 반추위액은 순천대학교 부속목장의 반추위 cannula가 시술된 Holstein에서 채취하였고, organic acids는 반추위액과 버퍼의 혼합액에 첨가하여 배양하였다. 그 결과 pH 값은 lactic acid, malic acid 및 succinic acid첨가구에서 6.69에서 6.16 정도로, 대조구와 다른 첨가구보다 낮았다. 총 가스 발생량은 배양 48시간에 aspartic acid, malic acid 및 succinic acid첨가구에서 유의적(p<0.05)으로 높았고, 메탄 발생량은 lactic acid 첨가구에서 대조구보다 낮았다. 총 VFA와 propionic acid의 농도는 배양 12시간에 모든 첨가구가 대조구에 비해 높았다. 반추위 미생물 측정 결과에서는 Fumaric acid와 malic acid의 bacteria수가 대조구에 비해 유의적으로 증가하였으며(p<0.05), protozoa수는 유의적(p<0.05)으로 감소되었다. 이상의 실험 결과를 종합해 보면, organic acids의 첨가는 반추위 내 pH를 감소시키고 가스 발생량, 반추위 미생물 성장량 및 propionic acid 모두 증가시켰으며, 특히 lactic acid는 메탄생성을 억제하였다. 앞으로 Organic acid와 다른 메탄억제 물질과 혼합하여 반추위 내 메탄생성 억제에 관한 구체적인 연구가 필요한 것으로 사료된다.

Feeding Acacia saligna to Sheep and Goats with or without the Addition of Urea or Polyethylene Glycol

  • Krebs, G.L.;Howard, D.M.;Dods, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1551-1556
    • /
    • 2007
  • The objective of the research was to investigate the effect of polyethylene glycol (PEG) or urea supplementation in sheep and goats fed a basal diet of Acacia saligna and wheat straw. The 3 dietary treatments were: (1) Control: ad libitum A. saligna+ 400 g/d wheat straw (95% DM) (basal diet); (2) Basal diet+50 g/d PEG 4000; and (3) Basal diet+1% (on a DM basis) urea sprayed onto the straw and A. saligna 30 min prior to feeding. All animals maintained live weight, regardless of the dietary treatment. All sheep readily consumed the A. saligna in preference to straw. In sheep both DMD and OMD were higher (p<0.05) where PEG was included in the diet compared to the other two treatments. Contrary to findings by other researchers there was no significant difference in DMI, DMD or OMD between sheep and goats in corresponding treatment groups. All animals were in positive N balance. For both sheep and goats, rumen ammonia concentrations were increased with the use of either urea or PEG. In these groups the maximum ammonia concentrations exceeded 50 mg/L, considered the minimum required to maximise microbial growth. This threshold, however, was exceeded only for a period of 8-11 h. Of those measured, rumen ammonia levels were generally the highest at 4 h post feeding. None of the measurements of rumen ammonia for the control group approached 50 mg/L. It is unclear how and why feed intake and live weight were maintained when rumen ammonia levels were often sub-optimal.

Effects of Moisture and a Saponin-based Surfactant during Barley Processing on Growth Performance and Carcass Quality of Feedlot Steers and on In vitro Ruminal Fermentation

  • Wang, Y.;Gibb, D.;Greer, D.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1690-1698
    • /
    • 2011
  • Feedlot and in vitro ruminal experiments were conducted to assess the effects of saponin-containing surfactant applied during tempering of barley grain on cattle growth performance and on ruminal fermentation. In the feedlot experiment, treatments with three barley grain/barley silage based diets were prepared using barley grain at 7.7% moisture (dry, D), after tempering to 18% moisture (M), or after tempering with a saponin-based surfactant included at 60 ml/t (MS). Each treatment was rolled at settings determined previously to yield optimally processed barley. A total of 180 newly weaned British${\times}$Charolais steers were fed three diets in 18 pens for a 63-d backgrounding period and 91-d finishing period to determine feed intake, growth rate and feed efficiency. Cattle were slaughtered at the end of the experiment to measure the carcass characteristics. Tempering reduced (p<0.001) volume weight and processing index, but processing characteristics were similar between MS and M. Tempering increased (p<0.05) growth during backgrounding only, compared with D, but did not affect feed intake in either phase. During backgrounding, feed efficiency was improved with tempering, but during finishing and overall this response was only observed with the surfactant. Tempering did not affect carcass weight, fat content or meat yield. Surfactant doubled the proportion of carcasses grading AAA. In the in vitro experiment, barley (500 mg; ground to <1.0 mm or steam-rolled) was incubated in buffered ruminal fluid (40 ml) without or with surfactant up to 20 ${\mu}l/g$ DM substrate for 24 h. Surfactant increased (p<0.05) apparent DM disappearance and starch digestibility but reduced productions of gas and the volatile fatty acid and acetate:propionate ratio, irrespective of barley particle size. Compared with feeding diets prepared with non-tempered barley, tempering with surfactant increased the feed efficiency of feedlot steers. This may have arisen from alteration in processing characteristics of barley grain by surfactant rather than its direct effect on rumen microbial fermentation.

The Effects of Feeding Acacia saligna on Feed Intake, Nitrogen Balance and Rumen Metabolism in Sheep

  • Krebs, G.L.;Howard, D.M.;Dods, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1367-1373
    • /
    • 2007
  • The aim of this study was to determine the feeding value to sheep of Acacia saligna grown under temperate conditions. Pen trials were undertaken to determine the effects of feeding A. saligna, which had been grown in a Mediterranean environment, on feed intake, nitrogen balance and rumen metabolism in sheep. Sheep were given ad libitum access to A. saligna with or without supplementation with PEG 4,000 or PEG 6,000. PEG 4000 appears to be the major detannification agent used in trials involving high tannin feed despite the fact that PEG 6000 has been shown to be more effective, in vitro. For this reason it was of interest to compare the two, in vivo. Dry matter intake was greater (p<0.05) in sheep supplemented with either PEG 4,000 or PEG 6,000 compared to the control. There was no difference, however, in intake between those supplemented with either PEG 4,000 or 6,000. Although animals were not weighed throughout the trial, a loss in body condition was obvious, in particular in the control group. Intake of N was greater (p<0.05) in sheep supplemented with either PEG 4,000 or PEG 6,000 than in the control. There was no difference in N intake between those supplemented with either PEG 4,000 or PEG 6,000. There were no significant differences in either the faecal or urinary N output between any of the treatment groups and all treatment groups were in negative N balance. Neither the average nor maximum pH of ruminal fluid of the control group was different to those supplemented with PEG. The minimum pH for the control group, however, was significantly higher (p<0.05) than for either of the PEG treatments. The average and the maximum ammonia levels were lower (p<0.05) in the control group compared with those in either of the PEG treatment groups. For all dietary treatments ruminal ammonia levels were well below the threshold for maximal microbial growth. Feeding A. saligna, without PEG, had a definite defaunating effect on the rumen. For all dietary treatments ruminal ammonia levels were well below the threshold for maximal microbial growth. It was concluded that A. saligna was inadequate as the sole source of nutrients for sheep, even with the addition of PEG 4,000 or PEG 6,000. The anti-nutritional effects on the animals were largely attributed to the excessive biological activity of the phenolics in the A. saligna leaves. There is a need to determine other supplements that may be complimentary with PEG to enhance the nutritive value of A. saligna to maintain a minimum of animal maintenance.

반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할 (The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems)

  • 로벨리아;이상석
    • 생명과학회지
    • /
    • 제31권5호
    • /
    • pp.520-526
    • /
    • 2021
  • 반추가축의 반추위내 미생물단백질은 단백질의 공급원중 일부이며 글루타메이트 생산을 위한 공급원이기도 하다. 글루탐산은 신체의 대사반응, 근육 및 기타 세포구성에 필요한 단백질 합성물질로 이용되며 면역기능항진에도 매우 필수적으로 이용된다. 또한 계면활성제, 완충제, 킬레이트제제, 향미 증강제, 배양배지 및 농업 분야에서 성장촉진제로 이용된다. 글루탐산은 감마-아미노부티르산(GABA)생산을 위한 기질로서 본 연구는 글루탐산의 기능과 글루탐산 탈 탄산효소 유전자를 포함하는 미생물에 대한 정보를 제공하는데 있다. GABA는 체온 조절, 건물섭취량, 유생산량 및 유성분을 개선시키는 것으로 알려져 있다. 대부분의 글루탐산과 GABA 생성 미생물은 대부분 Lactococcus, Lactobacillus, Enterococcus 및 Streptococcus 종과 같은 젖산생성 미생물로 이루어져 있다. 반추위내 대사기전을 보면 GABA 합성을 통해 succinate 생산과정을 거치고, succinate는 탈수소효소반응을 통해 프로피온산과 기타 대사산물을 생산할 수 있다. 또한 Clostridium tetanomorphum과 혐기성 Micrococci는 글루타메이트 발효과정에서 아세트산과 낙산을 생성한다. 프로피온산과 기타 대사산물은 간에서의 혈당으로 전변되어 반추가축의 유선세포에서 유당 및 체중증가를 위한 에너지를 제공한다. 이를 통해 반추가축의 건강상태 개선 및 성장촉진을 위한 중요한 미생물로 이용가능하다.

Microbial Evaluation of Fodder Tree Leaves as Ruminant Feed

  • Odenyo, A.A.;Osuji, P.O.;Negassa, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권5호
    • /
    • pp.708-714
    • /
    • 1999
  • Fermentation of legume fodder tree leaves by rumen microorganisms was evaluated. The substrates were sun-dried, ground leaves. Gas and volatile fatty acid (VFAs) production were estimated. Using gas production as an index of fermentation at 12 h, the leaves tested ranked as follows; Chamaecytisus palmensis>Gliricidia sepium>Sebania sesban>Tephrosia bracteolate>Leucaena pallida>Vernonia amygdalina>Acacia sieberiana>Sesbania goetzei>Acacia angustissima. Using VFA production, the ranking was a follows; G. sepium>S. sesban>S. goetzei>L. pallida>C. palmensis/V. amygdalina>T. bracteolate> A. sieberiana>A. angustissima. Absolute gas or VFA production rates, were also used to rank the leaves. Extracts (70% acetone) of A. angustissima inhibited the growth of Ruminococcus albus 8, R. flavefaciens FD-1, Prevotella ruminicola D3ID and Streptococcus bovis JBI while the trowth of Selenomonas ruminantium D was depressed when 0.6 ml exracts were added. C. palmensis water extracts enhanced cellulose hydrolysis by R. flavefaciens FD-1. All extracts reduced celluloysis by R. albus 8. R. flavefaciens FD-1 hydrolyzed more (p<0.001) cellulose than R. albus 8.

A Study on the Optimal Amino Acid Pattern at the Proximal Duodenum in Growing Sheep

  • Wang, Hongrong;Lu, Dexun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권1호
    • /
    • pp.38-44
    • /
    • 2002
  • Nine crossbred castrated lambs fitted with rumen and duodenum cannula and fed a diet of hay and concentrate formulated with ground corn and soybean meal as main ingredients were used to assess the duodenal ideal amino acid pattern. Three synthetic amino acid mixtures with different profile of essential amino acids were duodenally infused in order to get three different amino acid patterns flowing into the duodenum. The mixtures were designed to have similar amino acid profile as rumen microbial protein (Pm), casein (Pc) and modified muscle amino acid (Pmm). Results showed a lower urine nitrogen excretion (p=0.05), a higher nitrogen retention (p=0.04) and bodyweight gain with treatment Pmm. The modified muscle amino acid pattern also promoted a lower ratio of Gly to other amino acids in plasma (Gly/OAA) and a higher RNA and RNA/DNA concentration in the liver of the sheep. Meanwhile, the urea concentration in plasma was reduced and the insulin concentration was increased with Pmm treatment. No differences in glucose and growth hormone concentration in plasma were found among three treatments. All results obtained indicate that the modified muscle amino acid pattern (Lys 100%, Met+Cys 39%, Thr 76%, His 41%, Arg 72%, Leu 158%, Ile 81%, Val 105%, Phe 81% and Trp 13%) was the best for growing sheep.

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom;Kim, Seon-Woo;Kim, Myung-Hoo;Upadhaya, Santi D.;Kam, Dong-Keun;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권12호
    • /
    • pp.1657-1667
    • /
    • 2010
  • Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.