• Title/Summary/Keyword: Rumen Degradation

Search Result 191, Processing Time 0.021 seconds

Effects of Enzyme Application Method and Levels and Pre-treatment Times on Rumen Fermentation, Nutrient Degradation and Digestion in Goats and Steers

  • Hong, S.H.;Lee, B.K.;Choi, N.J.;Lee, Sang S.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.389-393
    • /
    • 2003
  • Present study investigate the effect of enzyme supplementation, methods (applied to rumen or enzyme treated diet) compared with no enzyme diet, on rumen fermentation and apparent nutrient digestibility in a $3{\times}3$ Latin square design with three rumen cannulated Korean Native goats. In situ rumen degradation kinetics was studied in three rumen cannulated Holstein steers. Three diets were, no enzyme, 1% enzyme in rumen and 1% enzyme in diet. The enzyme was sprayed onto forage, and the forage: concentrate ratio was 30:70. Degradation kinetics was studied with three enzyme levels (0, 1 and 2%, w/w) and four pre-treatment times (0, 1, 12 and 24 h). Results suggested that enzyme application method did not affect rumen fermentation, ruminal enzyme activity and total tract apparent digestibility. Nutrient degradation rate and effective degradability of DM, NDF and ADF increased with increasing enzyme level and pre-treatment times. Degradation of nutrients was affected by enzymes levels or pre-treatment times. Therefore, it is probable that the improved degradation may be due to the supplemented exogenous hydrolytic enzymes under a certain condition.

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

Effects of Chemical Treatments and Ensiling on the Chemical Composition and Degradation Rate in the Rumen (볏짚의 화학적 처리와 사일리지 제조가 화학성분 변화 및 한우 반추위 분해율에 미치는 영향)

  • 이성철
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • This study was conducted to examine of rice straw after chemical treatments and ensiling on its feeding value, in situ studies using a rumen fistulated Korean cow and nylon bag technique. NaOH treatment greatly improved the degradation the Dry matter and Neutral detergent fiber degradation in the rumen but the intake was not affected. Ammonia treatment did not improve the degradation rate of rice straw in the rumen, but remarkably increased the rice straw digestibility and intake by sheep. Making silage of rice straw did not affect its rumen degradation rate, but the digestibility and its take by sheep were greatly improved especially when a little molasses together with Lactobacillus were supplemented. Degradation rate of rice straw in the rumen measured by nylon bag technique was influenced by various treatments but did not appear to coincide with digestibility by sheep. This would be due to the fact that feed intake affect digestibility as well as the degradation in rumen. Therefore, it can be said that making silage with some molasses and Lactobacillus is one of the easest way of using rice straw for animal feed. (Key words : NaOH, Digestibility, Silage, Molasses )

  • PDF

DEGRADATION OF NUCLEIC ACIDS BY CELL-FREE EXTRACT OF MIXED RUMEN PROTOZOA OF BUFFALO RUMEN

  • Sinha, P.R.;Dutta, S.M..
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.4
    • /
    • pp.219-222
    • /
    • 1988
  • Degradation of deoxyribonucleic acid(DNA) and ribonucleic acid(RNA) by cell-free extract of mixed rumen protozoa of buffalo rumen was investigated. DNA was observed to be degraded rapidly during an initial incubation period of 2 hr with simultaneous appearance of degradation products. RNA on the other hand recorded a rapid degradation during an initial incubation period of 1 hr. RNA degradation products appeared upto an incubation period of 2 hr. DNA was observed to degrade into oligo- and mononucleotides. pyrimidine nucleosides, purine nucleoside adenosine and bases xanthine, hypoxanthine and thymine. Degradation products of RNA comprised of pyrimidine nucleosides, purine nucleoside, adenosine and bases xanthine, hypoxanthine and uracil besides oligo- and mononucleotides.

Effect of Transinoculation of Goat Rumen Liquor on Degradation and Metabolism of Mimosine in Sheep Fed with Leucaena leucocephala Leaves

  • Vaithiyanathan, S.;Sheikh, Q.;Kumar, Ravindra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.332-339
    • /
    • 2005
  • The effect of transinoculation of goat rumen liquor into sheep rumen on mimosine toxicity was studied. One adult Kutchi male goat having higher mimosine degradation capacity than sheep was gradually adapted to Leucaena leucocephala (Leucaena) leaves by feeding increasing level of eucaena leaves supplementation for 1 month. Six Bharat Merino rams (12-18 months of age) were divided into two equal groups with (group I) or without (group II) infusion of 200 ml of goat rumen liquor per animal. The mimosine degradation in groups I and II were 3.04 and 2.31; 3.90 and 3.73 mg per day per 10 ml rumen liquor respectively after 1 and 2 weeks of leucaena feeding leaves. Total rumen bacterial population in RGCA medium and in a selective medium containing iron showed an increasing trend in both groups, while the bacterial population growing in the presence of cellulose showed a decreasing trend. Animal performance data did not show any adverse effect. Results revealed that transinoculation of rumen liquor from leucaena leaves adapted goat to sheep rumen did not help to improve mimosine degradation in the sheep. The sheep transinoculated with goat rumen liquor displayed no in vivo improvements in nutrient utilization vis-a-vis mimosine metabolism.

Effect of Feed Types on Ochratoxin A Disappearance in Goat Rumen Fluid

  • Upadhaya, Santi Devi;Yang, Liu;Seo, Ja-Kyeom;Kim, Myung-Hoo;Lee, Chang-Kyu;Lee, Chan-Ho;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.198-205
    • /
    • 2011
  • This study was conducted to investigate the effect of feed types on Ochratoxin A (OTA) degradation by Korean native goats. Rumen fluid from canulated goats fed whole roughage or 50% roughage served as a source of micro-organisms. Experiments were undertaken i) to investigate OTA degradation ability in a $2{\times}4$ factorial arrangement with different feed types (100% roughage vs. 50% roughage) and rumen fluid fractions (whole rumen fluid, cells, autoclaved rumen fluid and supernatant) supplemented with OTA ii) to evaluate OTA degradation by the rumen fluid of goats fed two different diets at different time points (0, 3, 6, 9 and 12 h) of feeding iii) to isolate potential rumen microorganisms and iv) to identify elements responsible for OTA degradation. Rumen fluid from goats fed 100% roughage had higher (p<0.05) OTA degradability than 50% roughage diets. OTA degradation based on rumen fluid collection times showed that rumen fluid at 0 h showed significantly higher (p<0.05) degradability. Carboxypeptidase A (CPA) enzyme has been reported to be responsible for OTA degradation. Thus, using real time PCR, primers designed to target the CPA gene from Bacillus licheniformis could be amplified using genomic DNA from rumen fluid of goats and sequenced, thus enabling evaluation of the Bacillus population under different feeding condition and times. Our findings showed that the Bacillus population was significantly higher (p<0.05) before feeding (0 h) in animals which were fed a whole roughage diet, giving indirect evidence of OTA degradation being influenced by Bacillus sps. Thus, it can be concluded that OTA degradability is influenced by feed, feeding time and Bacillus licheniformis population.

RUMEN DEGRADABILITY OF ITALIAN RYEGRASS (Lolium multiflorum, L) HARVESTED AT THREE DIFFERENT GROWTH STAGES IN SHEEP

  • Fariani, A.;Warly, L.;Matsui, T.;Fujihara, T.;Harumoto, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • This experiment was carried out in order to evaluate the chemical composition and rumen degradation characteristics of Italian ryegrass harvested at three different growth stages, i,e. pre-blooming, early-blooming and late-blooming. Degradation values were obtained by incubation of the samples using the nylon bag technique on the rumen of sheep fed a normal diet (Timothy hay with 200 g/d concentrate per head) for 12, 24, 36, 48 and 72 hours, respectively. Neutral detergent fiver (NDF) content was highest at late-blooming (64.4%) while no difference was found among the pre-blooming and early-blooming (49.4% vs 48.3%). However, acid detergent fiber (ADF) content markedly increased from 30.0% at pre-blooming to 35.4% and 46.4% at early-blooming and late-blooming, respectively. Lignin and silica contents also increased as advancing maturity of the grass, Rumen degradation of dry matter (DM) significantly reduced (p < 0.05) as advancing maturity of the grass. Ruman degradation cellulose and ADF at pre-blooming were significantly higher (p < 0.05) than those of early-blooming and late-blooming. However, no significant differences were observed among the early-blooming and late-blooming. With advancing maturity, rumen degradation of NDF and hemicellulose significantly reduced (p < 0.05) at the incubation times.

Feeding Value of Ammoniated Rice Straw Supplemented with Rice Bran in Sheep: II. In Situ Rumen Degradation of Untreated and Ammonia Treated Rice Straw

  • Orden, E.A.;Yamaki, K.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.906-912
    • /
    • 2000
  • The effect of ammonia treatment and rice bran supplementation on the in situ rumen degradation of rice straw was determined using three Japanese Corriedale wethers fitted with permanent rumen cannula. About 4 g samples of diets containing 100% untreated rice straw (URS); 100% ammonia treated rice straw (ARS); 65% URS+30% rice bran (RB)+5% soybean meal (SBM) (T1); and 85% ARS+15% RB (T2) were incubated at 0, 4, 8, 16, 24, 48, 72, and 96 hours in the rumen of sheep to measure dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) degradability. The DM disappearance of ARS based diets were about 20% higher than that of URS based diets. Rice bran supplementation improved DM disappearance of URS but not on ammoniated straw. Degradation parameters showed that ammoniation increased rate (c) of straw degradation resulting to higher DM and fiber degradability but RB supplementation did not. ARS gave similar DM and CP solubility and effective rumen degradability (ED) with that of the supplemented groups indicating that ammoniation alone can give the same effect on rumen degradability of sheep receiving low quality roughage. All degradation parameters for NDF were consistently higher in ARS based-diets indicating improved fiber solubility. Rice bran supplementation did not affect degradation characteristics of the diets except on soluble DM and CP fraction (A) of URS but not on ARS.

MICROBIAL COLONISATION AND DEGRADATION OF SOME FIBROUS CROP RESIDUES IN THE RUMEN OF GOATS

  • Ho, Y.W.;Abdullah, N.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.519-524
    • /
    • 1996
  • An investigation was carried out to study the microbial colonization and degradation of five crop residues, viz., sago waste, rice straw, oil palm trunk shavings, untreated palm press fibre and palm press fibre teated with 3% ammonium hydroxide in the rumen of goats. Colonisation by rumen bacteria and fungi was already established on all the five crop residues 8 h after incubation. However, the extent of colonization varied among the crop residues. Microbial colonization was poor on palm press fibre (treated and untreated) but more extensive on sago waste, oil palm trunk shavings and rice straw. By 24 h, most of the soft-walled tissues in sago waste, rice straw and oil palm trunk shavings were degraded leaving the thick-walled tissues extensively colonized by bacteria and fungi. Degradation on palm press fibre was still limited. At 48 h, the thick-walled tissues of sago waste, oil palm trunk shavings and rice straw showed various degrees of degradation - from small erosion zones to large digested areas. Bacterial growth was similar to that at 24 h but fungal growth was less. On palm press fibre, microbial colonization was more extensive than at 24 h but degradation of the fibres was still limited. Degradation of all the five crop residues at 72 h was somewhat similar to that at 48 h. Overall, microbial colonization and degradation were the most extensive on sago waste, followed by rice straw and oil palm trunk shavings, and the least on palm press fibre (treated and untreated). Dry matter loss of the five crop residues at the various incubation periods also showed the same order of degradation.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.