• Title/Summary/Keyword: Rumen By-pass Protein

Search Result 7, Processing Time 0.022 seconds

Estimation of Ruminal Degradation and Intestinal Digestion of Tropical Protein Resources Using the Nylon Bag Technique and the Three-step In vitro Procedure in Dairy Cattle on Rice Straw Diets

  • Promkot, C.;Wanapat, Metha;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1849-1857
    • /
    • 2007
  • The experiment was carried out using fistulated multiparous Holstein Friesian crossbred (75% Holstein Friesian and 25% Red Sindhi) dairy cows in their dry period fed on untreated rice straw to evaluate the nutritive value of local protein feed resources using the in sacco method and in vitro pepsin-pancreatin digestion. Experimental feeds were cottonseed meal (CSM); soybean meal (SBM); dried brewery's grains (DBG); palm kernel meal (PSM); cassava hay (CH); leucaena leaf meal (LLM). Each feedstuff was weighed into duplicate nylon bags and incubated in each of the two rumen fistulated cows for 0, 2, 4, 8, 16, 24, and 48 h. Rumen feed residues from bags of 16 h incubation were used for estimation of lower gut digestibility by the technique of in vitro pepsin-pancreatin digestion. Ruminal ammonia-nitrogen ($NH_3-N$) concentrations did not differ between treatments or time with a mean of 5.5 mg%. Effective degradability of DM of CSM, SBM, DBG, PSM, CH and LLM were 41.9, 56.1, 30.8, 47.0, 41.1 and 47.5%, respectively. Effective degradabilities of the CP in feedstuffs were 49.6, 59.2, 40.9, 33.5, 47.3 and 65.0% for the respective feedstuffs. The CP in vitro pepsin-pancreatin digestibility as ranked from the highest to the lowest were SBM, CSM, LLM, CH, DBG, PSM, respectively. The intestinal and total tract digestion of feedstuffs in the current study were relatively lower than that obtained from previous literature. The results of this study indicate that SBM and LLM were highly degradable in the rumen, while CH, CSM and DBG were less degradable and, hence resulted in higher rumen undegradable protein. Soybean meal and LLM could be used to improve rumen ecology whilst CH, CSM and DBG could be used as rumen by-pass protein for ruminant feeding in the tropics.

Effect of Feeding Bypass Protein on Rumen Fermentation Profile of Crossbred Cows

  • Kalbande, V.H.;Thomas, C.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.974-978
    • /
    • 2001
  • The effect of three varying ratios (high, medium and low) of Rumen Degradable Protein (RDP) to Undegradable Dietary Protein (UDP) of 37:63, 52:48 and 70:30 in iso-nitrogenous and iso-caloric concentrate mixtures on rumen fermentation profile was studied using rumen fistulated Jersey crossbred cows. Rumen pH and ammonia nitrogen concentration were found to be lower with a concentrate mixture containing a higher UDP level of 63.38% when compared with those having medium and low UDP levels of 47.55 and 29.75%, respectively, at all post feeding intervals. Total volatile fatty acid concentration as well as concentrations of individual fatty acids viz., acetate, propionate and butyrate were also found higher in animals fed concentrate mixture with the highest UDP level.

Manipulation of Cassava Cultivation and Utilization to Improve Protein to Energy Biomass for Livestock Feeding in the Tropics

  • Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-472
    • /
    • 2003
  • Cassava (Manihot esculenta, Crantz), an annual tropical tuber crop, was nutritionally evaluated as a foliage for ruminants, especially dairy cattle. Cultivation of cassava biomass to produce hay is based on a first harvest of the foliage at three months after planting, followed every two months thereafter until one year. Inter-cropping of leguminous fodder as food-feed between rows of cassava, such as Leucaena leucocephala or cowpea (Vigna unculata), enriches soil fertility and provides additional fodder. Cassava hay contained 20 to 25% crude protein in the dry matter with good profile of amino acids. Feeding trials with cattle revealed high levels of DM intake (3.2% of BW) and high DM digestibility (71%). The hay contains tannin-protein complexes which could act as rumen by - pass protein for digestion in the small intestine. As cassava hay contains condensed tannins, it could have subsequent impact on changing rumen ecology particularly changing rumen microbes population. Therefore, supplementation with cassava hay at 1-2 kg/hd/d to dairy cattle could markedly reduce concentrate requirements, and increase milk yield and composition. Moreover, cassava hay supplementation in dairy cattle could increase milk thiocyanate which could possibly enhance milk quality and milk storage, especially in small holder-dairy farming. Condensed tannins contained in cassava hay have also been shown to potentially reduce gastrointestinal nematodes in ruminants and therefore could act as an anthelmintic agent. Cassava hay is therefore an excellent multi-nutrient source for animals, especially for dairy cattle during the long dry season, and has the potential to increase the productivity and profitability of sustainable livestock production systems in the tropics.

Effects on the Rumen Microbial Fermentation Characteristics of Lignosulfonate Treated Soybean Meal (Lignosulfonate처리 대두박의 반추위 내 미생물 발효특성에 미치는 영향)

  • Lee, Hun-Jong;Lee, Seung-Heon;Bae, Gui-Seck;Park, Je-Hwan;Chang, Moon-Baek
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.413-426
    • /
    • 2010
  • This study was conducted to investigate the effects on fermentation characteristics of rumen microorganism by different types and levels of lignosulfonate treated soybean meal (LSBM) in in vitro test and rumen simulation continuous culture (RSCC) system in dairy cows. The experiment I was control and 12 treatments (each with 3 replications) in vitro test to demonstrate composition of different types of treatments with lignosulfonate (Desulfonate, Na, Ca and solution) and levels (2, 4 and 8%) of soybean meal in the dairy cow diet. LSBM source treatments in the dairy cow diet showed pH value, $NH_3$-N concentration and total VFA concentration lower than control at all levels and incubation times (p<0.05). Dry matter digestibility of LSBM source treatments showed lower than control (p<0.05). Gas production and rumen microbial synthesis was decreased by rumen microbial fermentation for incubation times. Undegradable protein (UDP) concentration of all LSBM treatments was decreased for incubation times, and significantly higher than control (p<0.05). In the experiment II compared diets of the control, LSBM Na 2%, LSBM Sol 2%, which are high performance to undegradable protein (UDP) concentration experiment I in vitro test, and heated treatment lignosulfonate (LSBM Heat) 2% in the dairy cow diet from four station RSCC system ($4{\times}4$ Latin square). A rumen microbial fermentation characteristic was stability during 12~15 days of experimental period in all treatments. The pH value of LSBM treatments was higher than control treatment (p<0.05). The $NH_3$-N concentration, VFA concentration and rumen microbial synthesis of LSBM treatments were lower than control (p<0.05). The undegradable protein (UDP) showed LSBM Na 2% (45.28%), LSBM Sol 2% (43.52%) and LSBM Heat 2% (43.49%) higher than control (41.55%), respectively (p<0.05). Those experiments were designed to improve by-pass protein of diet and milk protein in the dairy cows. We will conduct those experiments the in vivo test by LSBM treatments in dairy cows diet.

Development and Evaluation of Protected Fat in Wheat Straw Based Total Mixed Ration

  • Sirohi, S.K.;Malik, Raman;Walli, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1405-1408
    • /
    • 2001
  • Ca salt of soybean oil (PSO) and that of mustard oil plus mahua oil (PMOMO) (50:50) were prepared using double decomposition method, and further tested for their fatty acid composition and degree of saponification. Furthermore, the different levels of protected fat of PSO and PMOMO were evaluated in wheat straw based total mixed ration (TMR) in vitro. Results indicated that capric, lauric, myristic, palmitic, steric, oleic, linoleic, leinolenic acids were traces, traces, traces, 10.00, 2.00, 25.00, 58.50, 5.0% in PSO while the corresponding values in PMOMO were 1.08, 0.28, 0.45, 16.9, 12.95, 44.38, 17.46 and 6.50%, respectively. The degree of saponification of both protected fat supplements was more than 80%. Six treatment combinations were tested I.e., blank without feed and fat supplement (T1); control diet with out fat supplement (T2); control diet plus bypass fat supplement (PSO) so that diet contain 5% fat (T3); control diet plus bypass fat supplement (PSO) so that diet contain 7.5% fat (T4); two more diets viz. T5 and T6 were formulated using bypass fat supplement from PMOMO containing 5 and 7.5% fat respectively. TMR was prepared using 50% concentrate mixture and 50% wheat straw. Result indicated that TVFA, $NH_3-N$,TCA-N, total-N and total gas production were increased in treatment diets at 7.5% level of supplementation, however, fermentation pattern remain similar at 5.0% level of supplementation with respect to control diet. Nevertheless, IVDMD and IVOMD values remained unchanged, rather non-significant at both fat levels and with the both fat sources. On the basis of results it was concluded that Ca-salt of Soybean oil or Mustard plus Mahua oil did not show any negative effect either on digestibility or on microbial protein synthesis in rumen, hence the dietary fat upto 7.5% level in total mixed ration based on wheat straw, could be safely used without any adverse effect on rumen fermentation.

Effect of Feeding Bypass Protein with Urea Treated Jowar Kadbi (Sorghum Straw) on Performance of Cross Bred (HF × DEONI) Calve

  • Kalbande, V.H.;Chainpure, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.651-654
    • /
    • 2001
  • A study was made of the efficiency of ammonia N retention by Jowar kadbi (sorghum straw), initially 6.41% crude protein (CP), treated with 4% urea solution. After 30 days the CP in straw that was unchaffed and had been left uncovered was 10.02, and in chaffed straw that had been covered with a polythene sheet was 10.9%. The two treated straws were each fed to six crossbred (HF$\times$Deoni) calves, initially $12{\pm}2$ months old and $86.7{\pm}3.2kg$ bodyweight. They were also given two isocaloric (70% TDN) and isonitrogenous (20% CP) concentrate mixtures differing in calculated Rumen Degradable to Undegradable Dietary Protein ratio (RDP:UDP). Those fed the unchaffed uncovered treated straw (treatment C) received 65 RDP:35UDP and the other group (T1) received concentrate with a 55:45 ratio. The T1 group had the higher DM intake (p<0.01) in total (306 vs 268 kg), per day (4.1 vs 3.6 kg) and per unit bodyweight. Digestibility of DM, OM, CP and NDF, but not ADF, was higher in T1 and that group had the higher daily gain (517 vs 333 g) and higher total gain (38.8 vs 25.0 kg) over the 75 d of the feeding trial. It is concluded that chaffing and covering of Jowar kadbi treated with urea, not likely to be adopted by farmers because of financial constraints, does not confer important benefits. A concentrate supplement (estimated 45% of the CP as UDP) to calves given the treated straw has a beneficial effect on their growth and development.

Participation Scheme of Smallholder Dairy Farmers in the Northeast Thailand on Improving Feeding Systems

  • Wanapat, M.;Pimpa, O.;Petlum, A.;Wachirapakorn, C.;Yuanklang, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.830-836
    • /
    • 2000
  • A participation scheme involving smallholder dairy farmers in improving dairy productivity through the use of local feeds, on-farm established feeds and crop residues was carried out in the Northeast, Thailand. At six milk collection centers, 63 farmers with 340 lactating cows participated in this research and demonstration of feed supplements. Farmers and cows were allotted to receive respective feed supplements: high-quality feed block (HQFB), high-quality feed pellet (HQFP), dried cassava leaf/cassava hay, dried leucaena leaf and cottonseed meal: 5% urea treated rice straw was fed as a source of roughage throughout the feeding period of the dry season. Trainings and workshops were organized by the researchers at the University, research station, demonstration sites and on-farms. Regular visits to the fartns by researchers and extension officers were made while discussions and demonstrations were performed in addition. Participating farmers also visited other farmers during the demonstration which offered a real practical perspective and farmer-to-farmer interaction. As a result of this participation and demonstration scheme, the farmers could learn more effectively and accepted the technology more readily, especially the practicality of the feed preparation, feed establishment, feeding method and feed reserve. Strategic supplementation of these feed supplements resulted in improving milk yield, milk quality, overall condition of the cows and higher income return through increased productivity and lower level use of concentrate to milk yield from 1:2 to 1:3 or lower. Based on this research and demonstration /participation scheme, all feed supplements enhanced productivity, however the establishment of cassava hay on fartns deserved more attention and warrants a wider developmental expansion among dairy farmers since it contained high rumen by-pass protein (tannin-protein complex) and could be easily produced and be sustainable on farms.