• 제목/요약/키워드: Rumen $NH_3$-N Concentration

검색결과 87건 처리시간 0.023초

Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls

  • Xia, Chuanqi;Rahman, Muhammad Aziz Ur;Yang, He;Shao, Taoqi;Qiu, Qinghua;Su, Huawei;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권10호
    • /
    • pp.1643-1653
    • /
    • 2018
  • Objective: This study investigated the effect of dietary crude protein (CP) supplementation on nutrient intake, nitrogen (N) utilisation, blood metabolites, ruminal fermentation and growth performance of young Holstein bulls. Methods: Twenty-one young bulls weighing $277{\pm}11.2kg$ were equally divided into three groups and were offered diets formulated with low CP (LCP; 10.21% CP and 4.22% rumen degradable protein [RDP]), medium CP (MCP; 12.35% CP and 5.17% RDP) and high CP (HCP; 14.24% CP and 6.03% RDP). Yellow corn silage was used as a unique forage source and was mixed with concentrate. This mixed feed was given ad libitum to the young bulls included in the study. Results: Results showed that CP intake, blood urea nitrogen, N intake, total N excretion and N balance increased linearly with an increase in dietary CP level (p<0.05). However, no significant difference was observed in nutrient digestibility among the bulls receiving the different diets. Ruminal pH (p<0.05) and ammonia nitrogen ($NH_3-N$) concentration (p<0.01) were significantly higher in the bulls receiving the MCP and HCP diets than in those receiving the LCP diet. The bulls receiving the HCP diet showed significantly higher ruminal bacterial protein level, propionate, acetate and total volatile fatty acid (TVFA) concentrations than bulls receiving the LCP diet (p<0.05). Moreover, dietary CP level exerted a significant positive effect on the final body weight, average daily gain and gain-to-feed ratio of the bulls (p<0.05). Conclusion: High dietary CP level is optimal for achieving maximum growth and high profitability without exerting a negative effect on the physiology of growing Holstein bulls.

Effects of Momordica charantia Saponins on In vitro Ruminal Fermentation and Microbial Population

  • Kang, Jinhe;Zeng, Bo;Tang, Shaoxun;Wang, Min;Han, Xuefeng;Zhou, Chuanshe;Yan, Qiongxian;He, Zhixiong;Liu, Jinfu;Tan, Zhiliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권4호
    • /
    • pp.500-508
    • /
    • 2016
  • This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, $NH_3-N$, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 ($FRD_0$) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production ($V_F$) and the half-life ($t_{0.5}$) compared with the control. The $NH_3-N$ concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the ability to modulate the ruminal fermentation pattern by regulating the number of functional rumen microbes including cellulolytic bacteria and fungi populations, and may have potential as a feed additive applied in the diets of ruminants.

Effect of Plants Containing Secondary Compounds with Palm Oil on Feed Intake, Digestibility, Microbial Protein Synthesis and Microbial Population in Dairy Cows

  • Anantasook, N.;Wanapat, M.;Cherdthong, A.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.820-826
    • /
    • 2013
  • The objective of this study was to determine the effect of rain tree pod meal with palm oil supplementation on feed intake, digestibility, microbial protein synthesis and microbial populations in dairy cows. Four, multiparous early-lactation Holstein-Friesian crossbred (75%) lactating dairy cows with an initial body weight (BW) of $405{\pm}40$ kg and $36{\pm}8$ DIM were randomly assigned to receive dietary treatments according to a $4{\times}4$ Latin square design. The four dietary treatments were un-supplementation (control), supplementation with rain tree pod meal (RPM) at 60 g/kg, supplementation with palm oil (PO) at 20 g/kg, and supplementation with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter intake. The cows were offered concentrates, at a ratio of concentrate to milk production of 1:2, and chopped 30 g/kg of urea treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM, respectively. It was found that supplementation with RPM and/or PO to dairy cows diets did not show negative effects on feed intake and ruminal pH and BUN at any times of sampling (p>0.05). However, RPM supplementation resulted in lower crude protein digestibility, $NH_3$-N concentration and number of proteolytic bacteria. It resulted in greater allantoin absorption and microbial crude protein (p<0.05). In addition, dairy cows showed a higher efficiency of microbial N supply (EMNS) in both RPM and RPO treatments. Moreover, NDF digestibility and cellulolytic bacteria numbers were highest in RPO supplementation (p<0.05) while, supplementation with RPM and/or PO decreased the protozoa population in dairy cows. Based on this study, supplementation with RPM and/or PO in diets could improve fiber digestibility, microbial protein synthesis in terms of quantity and efficiency and microbial populations in dairy cows.

Nutrient Utilization, Body Composition and Lactation Performance of First Lactation Bali Cows (Bos sondaicus) on Grass-Legume Based Diets

  • Sukarini, I.A.M.;Sastradipradja, D.;Sutardi, T.;Mahardika, IG.;Budiarta, IG.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권12호
    • /
    • pp.1681-1690
    • /
    • 2000
  • A study on energy and protein utilization, and milk production of Bali cows on grass-legume diets was carried out using 12 first lactation cows (initial BW $263.79{\pm}21.66kg$) during a period of 16 weeks starting immediately post calving. The animals were randomly allotted into 4 dietary treatment groups R1, R2, R3 and R4, receiving from the last 2 months of pregnancy onwards, graded improved rations based on a mixture of locally available grass and legume feed ad libitum. R1 contained on a DM basis 70% elephant grass (PP, Penisetum purpureum) plus 30% Gliricidia sepia leaves (GS), R2 was 30% PP plus 55% GS supplemented with 15% Hibiscus tilliactus leaves (HT, defaunating effect), R3 and R4 were 22.5% PP+41.25% GS+11.25% HT+25% concentrate, where R3 was not and R4 supplemented with zinc di-acetate. TDN, CP and zinc contents of the diets were 58.2%, 12.05% and 18.3 mg/kg respectively for R1, 65.05%, 16.9% and 25.6 mg/kg respectively for R2, 66.03%, 16.71% and 29.02 mg/kg respectively for R3 and 66.03%, 16.71% and 60.47 mg/kg respectively for R4. Milk production and body weight were monitored throughout the experimental period. In vivo body composition by the urea space technique validated by the body density method and supported by carcass data was estimated at the start and termination of the experiment. Nutrient balance and rumen performance characteristics were measured during a balance trial of 7 days during the 3rd and 4th week of the lactation period. Results indicated that quality of ration caused improvement of ruminal total VFA concentration, increments being 52 to 65% for R2, R3 and R4 above R1, with increments of acetate being less (31 to 48%) and propionate being proportionally more in comparison to total VFA increments. Similarly, ammonia concentrations increased to 5.24 to 7.07 mM, equivalent to 7.34 to 9.90 mg $NH_3-N/100ml$ rumen fluid. Results also indicated that feed quality did not affect DE and ME intakes, and heat production (HP), but increased GE, UE, energy in milk and total retained energy (RE total) in body tissues and milk. Intake-, digestible- and catabolized-protein, and retained-protein in body tissues and milk (Rprot) were all elevated increasing the quality of ration. Similar results were obtained for milk yield and components with mean values reaching 2.085 kg/d (R4) versus 0.92 kg/d (R1) for milk yield, and 170.22 g/d (R4) vs 71.69 g/d (R1), 105.74 g/d (R4) vs 45.35 g/d (R1), 101.34 g/d (R4) vs 46.36 g/d (R1) for milk-fat, -protein, and -lactose, respectively. Relatively high yields of milk production was maintained longer for R4 as compared to the other treatment groups. There were no significant effects on body mass and components due to lactation. From the relationship $RE_{total}$ (MJ/d)=12.79-0.373 ME (MJ/d); (r=0.73), it was found that $ME_{m}=0.53MJ/kgW^{0.75}.d$. Requirement of energy to support the production of milk, ranging from 0.5 to 3.0 kg/d, follows the equation: Milk Prod. ($Q_{mp}$, kg/d)=[-2.48+4.31 ME($MJ/kg^{0.75}.d$)]; (r=0.6) or $Q_{mp}$=-3.4+[0.08($ME-RE_{body\;tissue}$)]MJ/d]; (r=0.94). The requirement for protein intake for maintenance ($IP_m$) equals $6.19 g/kg^{0.75}.d$ derived from the relationship RP=-47.4+0.12 IP; (r=0.74, n=9). Equation for protein requirement for lactation is $Q_{nl}$=[($Q_{mp}$)(% protein in milk)($I_{mp}$)]/100, where $Q_{nl}$ is g protein required for lactation, $Q_{mp}$ is daily milk yield, Bali cow's milk-protein content av. 5.04%, and $I_{mp}$ is metabolic increment for milk production ($ME_{lakt}/ME_{m}=1.46$).

Administration of encapsulated L-tryptophan improves duodenal starch digestion and increases gastrointestinal hormones secretions in beef cattle

  • Lee, Sang-Bum;Lee, Kyung-Won;Wang, Tao;Lee, Jae-Sung;Jung, U-Suk;Nejad, Jalil Ghassemi;Oh, Young-Kyoon;Baek, Youl-Chang;Kim, Kyoung Hoon;Lee, Hong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.91-99
    • /
    • 2020
  • Objective: This study investigated the effects of oral administration of rumen-protected L-tryptophan (RPL-T) on duodenal starch digestion and gastrointestinal hormones (GIH) secretions using Hanwoo beef steers as the animal models. Methods: Four steers (423±24 kg) fitted with ruminal and duodenal cannulas were employed in a crossover design replicated twice. Treatments were control (basal diet) and RPL-T (basal diet+191.1 mg/kg body weight [BW]) group. Blood and duodenal samples were collected to measure serum GIH levels and pancreatic α-amylase activity at day 0, 1, 3, and 5 (-30, 30, 90, 150, and 210 min) of the study. Samples from each segment of the gastrointestinal tract were collected via ruminal and duodenal cannulas and were used to determine soluble protein and the starch digestion rate at days 6 (-30, 180, 360, and 540 min) and 8 (-30, 90, 270, and 450 min) of the experiment. Results: No significant difference in ruminal pH, NH3-N, and total volatile fatty acid including the levels of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate, and the acetate-to-propionate ratio was observed between groups (p>0.05). Crude protein uptake was higher and feces starch content was lower in RPL-T group than the control group (p<0.05). The D-glucose contents of feces in RPL-T group decreased at day 5 compared to those in the control group (p<0.05), however, no change was found at day 0, 1, or 3 compared to the control group (p>0.05). Serum cholecystokinin (CCK), melatonin, duodenal pancreatic α-amylase activity, and starch digestion were significantly higher in RPL-T group than the control group (p<0.05). Conclusion: Taken together, oral administration of RPL-T at the rate of 191.1 mg/kg BW consistently increased CCK concentration, pancreatic α-amylase activity in duodenal fluids, and starch digestion rate in the small intestine and thus found to be beneficial.

섬유질배합사료 급여가 비육후기 거세한우의 반추위 발효성상, 소화율 및 산육성에 미치는 영향 (Effects of Total Mixed Rations on Ruminal Characteristics, Digestibility and Beef Production of Hanwoo Steers)

  • 김경훈;김기수;이상철;오영균;정찬성;김건중
    • Journal of Animal Science and Technology
    • /
    • 제45권3호
    • /
    • pp.387-396
    • /
    • 2003
  • 본 연구는 시판 비육후기용 사료와 볏짚을 급여한 관행적 비육후기 사료급여형태(대조구)와 특정 비육농가에서 급여하고 있는 섬유질배합사료의 단독급여 효과를 비교하기 위해 증체량, 사료효율, 도체등급 등을 조사하였고(시험 1), 결과 해석을 위해 시험 2에서 반추위 발효성상에 미치는 영향과 소화율을 조사하였다. 비육후기의 섬유질배합사료 사료의 급여효과 시험에서는 섬유질배합사료의 건물 사료섭취량이 1일 7.4kg으로 대조구와 차이가 없었고, 일당 증체량에서는 718g으로 대조구 775g보다 낮았으나 유의성은 없었다. 1kg 증체에 필요한 사료요구량에서는 섬유질배합사료구가 10.5kg으로 대조구보다 약 0.8kg 더 높았다. 대조구의 A등급 출현율은 22%였으나, 섬유질배합사료구는 33%로 섬유질배합사료구의 A등급 출현율이 높았고, 육질 등급에서도 1등급 출현율이 대조구와 섬유질배합사료구에서 각각 56%와 75%로 섬유질배합사료구가 현저히 높았다. 섬유질배합사료 사료의 건물을 비롯한 조단백, 조지방, 그리고 총에너지의 전장소화율은 대조구와 비교하여 약 1.2-1.6배 더 유의적으로 높았던 것으로 나타났다. 반추위 내의 pH 변화는 섬유질배합사료구가 배합사료를 급여한 관행구보다 높은 pH 6.0이상에서 비교적 안정적으로 유지되었다. 반추위내 NH3-N 농도는 섬유질배합사료구가 사료급여 후 8시간 후까지 높은 수준에서 유지되었고, 특히 사료급여 2시간 후 까지 대조구의 2배에 이르는 28.2mg/$d\ell$까지 급격히 증가하였다(P<0.05). 대조구와 섬유질배합사료구의 총 VFA 함량은 사료급여 후 2시간까지 증가하였다가 그 후 감소하는 경향이 비슷하였으며, 유의적인 차이도 없었다. 그러나 branch chained fatty acid (BCFA)인 iso-butyric acid와 iso-valeric acid의 비율에서는 섬유질배합사료와 대조구간에 차이가 있었고, 특히 사료급여 후 3-5시간 내에 섬유질배합사료구가 유의성있게(P<0.01) 높았다. 본 시험의 결과, 섬유질배합사료 급여는 한우의 반추위 발효를 안정화시키고 비육후기 산육성 및 육질등급을 높이는 효과가 있었다.

Effects of Increasing Level of Dietary Rice Straw on Chewing Activity, Ruminal Fermentation and Fibrolytic Enzyme Activity in Growing Goats

  • Wanga, M.;Zhaoa, X.G.;Tan, Z.L.;Tang, S.X.;Zhou, C.S.;Sun, Z.H.;Han, X.F.;Wang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권8호
    • /
    • pp.1022-1027
    • /
    • 2010
  • Effects of increasing dietary rice straw on chewing activity, ruminal fermentation, and fibrolytic enzyme activity in growing goats were investigated in a $4{\times}4$ Latin Square experiment. The goats were offered four diets with an increasing proportion of rice straw (i.e. 0.05, 0.10, 0.15 and 0.20, respectively, on dry matter basis). Increasing level of rice straw increased ($P_{linear\;effect}$ <0.05) the time spent on eating, ruminating, and chewing. The ruminal pH and acetate: propionate ratio were increased ($P_{linear\;effect}$ <0.05), while the $NH_3$-N concentration was decreased ($P_{linear\;effect}$ <0.01). Increasing level of rice straw in the diet increased ($P_{linear\;effect}{\leq}0.01$) molar proportion of acetate and isovalerate, and decreased ($P_{linear\;effect}$ <0.01) molar proportion of propionate. The CMCase, xylanase and cellobiase activities in the rumen were decreased ($P_{linear\;effect}$ <0.05) with increasing level of dietary rice straw, whereas the avicelase activity was increased ($P_{linear\;effect}$ <0.01). In summary, increased level of rice straw elevated the dietary neutral detergent fibre (NDF) content in the diet and had a great impact on chewing activity and ruminal fermentation.