• Title/Summary/Keyword: Rulebase Update

Search Result 2, Processing Time 0.024 seconds

Fuzzy Logic Modeling and Its Application to A Walking-Beam Reheating Furnace

  • Zhang, Bin;Wang, Jing-Cheng
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.182-187
    • /
    • 2007
  • A fuzzy modeling method is proposed to build the dynamic model of a walking-beam reheating furnace from the recorded data. In the proposed method, the number of membership function on each variable is increased individually and the modeling accuracy is evaluated iteratively. When the modeling accuracy is satisfied, the membership functions on each variable are fixed and the structure of fuzzy model is determined. Because the training data is limited, in this process, as the number of membership function increase, it is highly possible that some rules are missing, i.e., no data in the training set corresponds to the consequent part of a missing rule. To complete the rulebase, the output of the model constructed at the previous step is used to generate the consequent part of the missing rules. Finally, in the real time application, a rolling update scheme to rulebase is introduced to compensate the change of system dynamics and fine tune the rulebase. The proposed method is verified by the application to the modeling of a reheating furnace.

Design & application of adaptive fuzzy-neuro controllers (적응 퍼지-뉴로 제어기의 설계와 응용)

  • Kang, Kyeng-Wuon;Kim, Yong-Min;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF