• Title/Summary/Keyword: Rule-based inference

Search Result 274, Processing Time 0.041 seconds

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

Implementation of Rule-based Inference System on Microcontroller for Smart Home (마이크로컨트롤러를 이용한 스마트 홈 전용 규칙기반 추론 시스템)

  • Koo, Bon-Jae;Shin, Won-Yong;Yang, Sung-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.850-852
    • /
    • 2014
  • Recently, the development of Machine to Machine (M2M) communication has been largely accomplished in a variety of fields including smart home. In M2M communication, the role of sensor node is only limited to gather data and send them to upper application layers. In this research, the limited role of the sensor node in traditional M2M communication is improved in order for the devices to make inference, which makes it possible to provide basic context-aware services within sensor node level. Therefore, implementation of rule-based inference system on microcontroller for smart home is proposed.

  • PDF

A Strategy of Dynamic Inference for a Knowledge-Based System with Fuzzy Production Rules (퍼지규칙으로 구성된 지식기반시스템에서 동적 추론전략)

  • 송수섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.81-95
    • /
    • 2000
  • A knowledge-based system with fuzzy production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a strategy to reflect the dynamic nature of real system when we make inferences with a knowledge-based system. This paper proposes a strategy of dynamic inferencing for a knowledge-based system with fuzzy production rules. The strategy suggested in this paper applies weights of attributes of conditions of a rule in the knowledge-base. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by AHP(Analytic Hierarcy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with MIN operator, into a single DM for the rule. In this way, overall DM for a rule changes depending on the importance of attributes of the rule. As a result, the dynamic nature of a real system can be incorporated in an inference with fuzzy production rules.

  • PDF

Web Enabled Expert Systems using Hyperlink-based Inference

  • Yong U. Song;Kim, Wooju;June S. Hong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.319-328
    • /
    • 2003
  • With the proliferation of WWW, providing more intelligence to Web sites has become a major concern in e-business industry. In recent days, this trend is more accelerated by prosperity of CRM (Customer Relationship Management) in terms of various aspects such as product recommendation, self after service, etc. To accomplish this goal, many e-companies are eager to embed web enabled rule-based system, that is, expert systems into their Web sites and several well-known commercial tools are already available in the market. Most of those tools are developed based on CGI so far but CGI based systems inherently suffer over-burden problem when there are too many service demands at the same time due to the nature of CGI. To overcome this limitation of the existing CGI based expert systems, we propose a new form of Web-enabled expert system using hyperlink-based inference mechanism. In terms of burden to Web server, our approach is proven to outperform CGI based approach theoretically and also empirically. For practical purpose, our this approach is implemented in a software system, WeBIS and a graphic rule editing methodology, Expert Diagram is incorporated into the system to facilitates rule generation and maintenance. WeBIS is now successfully operated for financial consulting in the web site of a leading financial consulting company in Korea.

  • PDF

Fuzzy identification by means of fuzzy inference method (퍼지추론 방법에 의한 퍼지동정)

  • 안태천;황형수;오성권;김현기;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type 1), linear inference (type 2), and modified linear inference (type 3). The fuzzy c-means clustering and modified complex methods are used in order to identify the preise structure and parameter of fuzzy implication rules, respectively and the least square method is utilized for the identification of optimal consequence parameters. Time series data for gas funace and sewage treatment processes are used to evaluate the performances of the proposed rule-based fuzzy modeling.

  • PDF

A Development of Fuzzy-Logic Application for Improving Safety Diagnosis Rating Method of Agricultural Fill Dam (농업용 필댐의 안전진단등급 평가법 개선을 위한 퍼지논리 적용법 개발)

  • Yun, Sung-wook;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.33-43
    • /
    • 2023
  • In this study, it was developed and verified an application method of fuzzy-logic theory to the rating process of agricultural fill dam safety. A fuzzy-logic is very famous logical system when some decision making is made on the status of a lack of information. Three proxies were selected and configured membership functions (MFs) and these MFs were activated in the process of fuzzification procedures. Fuzzified vlaues were passed through the rule-based inference system, then fire strength could classified among cases of the rule-based inference system. To obtain final results, Mandani-type was adapted in the defuzzification process. As the results, it was shown the developed system can give a correct results that was compared with Matlab - fuzzy inference function. More ever it could perform the detailed analysis and improvement on the infrastructure safety rating process using classical diagnosis method.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Neural Logic Network-Based Fuzzy Inference Network and its Search Strategy (신경논리망 기반의 퍼지추론 네트워크와 탐색 전략)

  • Lee, Heon-Joo;Kim, Jae-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1138-1146
    • /
    • 1996
  • Fuzzy logic ignores some informations in the reasoning process. Neural networks are powerful tools for the pattern processing. However, to model human knowledges, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy logical reasoning, we construct fuzzy inference net-work based on the neural logic network, extending the existing rule-inferencing network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search cost for searching sequentially and searching by means of priorities.

  • PDF

Performance Improvement of Multiple Observer based FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.444-451
    • /
    • 1999
  • A diagnostic rule-base design method for enhancing fault detection and isolation performance of multiple obsever based fault detection isolation schemes (FIDS) is presented. The diagnostic rule-base has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises a rule base and a fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic with threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rult-base. The suggested scheme is applied to the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

A Detection Method of Contradictory Informations in a Rule-based Inference System (규칙 기반 추론 시스템에서 모순 정보의 검출 기법에 관한 연구)

  • 우영운;한수환;박충식
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • In this paper, a detection method of contradiction between input informations is proposed when the inference is processed in rule-based systems. The proposed method is accomplished by improving the label representation and the label management scheme in a conventional ATMS(Assumption-based Truth Maintenance System). The Proposed method also can represent and process input informations having uncertainty values.

  • PDF